Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: Alan Bennett x
Clear All Modify Search

Fruit softening is integral to the ripening process. It is an important component of fruit quality, but also initiates deterioration and is a limiting determinant of shelf-life. Intensive research has attempted to elucidate the biochemical and genetic control of fruit softening with the goal of controlling this process as a means to enhance both fruit quality and shelf-life. Current models of fruit softening focus on cell wall disassembly as the major biochemical event regulating fruit softening. Examination of the sequence of cell wall disassembly in ripening Charentais melon fruit suggested that softening could be divided into two distinct phases. The early stage of fruit softening was associated with the regulated disassembly of xyloglucan polymers and the later softening that accompanies over-ripe deterioration was associated with pectin depolymerization. Characterization of cell wall changes in other fruit, including tomato, suggest that this may represent a general model of sequential cell wall disassembly in ripening fruit. Interestingly, the early events of xyloglucan disassembly were not associated with the activation or expression of xyloclucan hydrolases but were associated with the expression of a ripening-regulated expansin gene. Analysis of transgenic tomato fruit with suppressed expansin gene expression or with suppressed polygalacturonase gene expression supports a general model of sequential disassembly of xyloglucan and pectin that control the early and late phases of fruit softening, respectively.

Free access

Higher plant inhibitors of fungal polygalacturonases are potential contributors to plant defense. To test this hypothesis we have raised antibodies against the `Bartlett' pear fruit polygalacturonase inhibitor (PGIP) and cloned a pear fruit PGIP cDNA. The pear PGIP cDNA was isolated by polymerase chain reactions based on our amino acid and nucleotide sequence information. Sequence analysis predicts a gene product of 34.5 kD with an isoelectric point of 6.02 in agreement with our biochemical data. Seven potential glycosylation sites are consistent with the glycoprotein character of these PGIPs. Southern blot analysis suggests the presence of 1 or 2 genes in the pear genome. Northern blot analysis indicates the presence of a transcript of 1.5 kb. Western blot analysis shows cross-reactivity of the anti-pear PGIP antibody to various dicot species as well as corn.

Free access

Landscape plant evaluations were conducted in eight states: Colorado, Minnesota, North Carolina, Ohio, Oregon, Pennsylvania, Texas, and Vermont for 17 switchgrass (Panicum virgatum) and five little bluestem (Schizachyrium scoparium) cultivars. Additional locations in Florida (Fort Lauderdale, Fort Pierce, Quincy, and Wimauma), Nebraska (Lincoln), and Lubbock and San Marcos completed 1 or 2 years of the trials. Plants were established in 2012 and data were collected for 3 years, 2013–15. Sites were asked to compile annual data on plant height, width, flowering time, fall color, pests, foliage color determined by the Royal Horticultural Society’s color chart, plant form, flowering date, floral impact, self-seeding, winter injury, landscape impact, and mortality. Texas A&M Agricultural Research and Extension Center (Overton), Florida (all four locations), and Vermont had the highest mortality rate. Southern Florida locations lost 50% of their plants by the end of 2014. Wide variation was reported for landscape impact, individual cultivar height, and width from different regions of the United States. Three of the 17 switchgrass cultivars, Cloud 9, Northwind, and Thundercloud, had a rating of 4.0 or higher averaged over six or more locations for plant form, floral, and landscape impact. ‘Shenandoah’ and ‘Warrior’ switchgrass had a rating of 4.0 or higher averaged over six or more locations for plant form and landscape impact, but not floral impact. Only one of the five little bluestem cultivars, Blue Heaven® rated 4.0 or higher, for plant form and landscape impact when averaged over six or more locations. This range of variability in landscape plant performance demonstrates the importance of local plant evaluations.

Full access