Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Alan B. Bennett x
Clear All Modify Search
Free access

Alan B. Bennett

Fruit softening is integral to the ripening process. It is an important component of fruit quality, but also initiates deterioration and is a limiting determinant of shelf-life. Intensive research has attempted to elucidate the biochemical and genetic control of fruit softening with the goal of controlling this process as a means to enhance both fruit quality and shelf-life. Current models of fruit softening focus on cell wall disassembly as the major biochemical event regulating fruit softening. Examination of the sequence of cell wall disassembly in ripening Charentais melon fruit suggested that softening could be divided into two distinct phases. The early stage of fruit softening was associated with the regulated disassembly of xyloglucan polymers and the later softening that accompanies over-ripe deterioration was associated with pectin depolymerization. Characterization of cell wall changes in other fruit, including tomato, suggest that this may represent a general model of sequential cell wall disassembly in ripening fruit. Interestingly, the early events of xyloglucan disassembly were not associated with the activation or expression of xyloclucan hydrolases but were associated with the expression of a ripening-regulated expansin gene. Analysis of transgenic tomato fruit with suppressed expansin gene expression or with suppressed polygalacturonase gene expression supports a general model of sequential disassembly of xyloglucan and pectin that control the early and late phases of fruit softening, respectively.