Search Results

You are looking at 1 - 4 of 4 items for

  • Author or Editor: A.J. Lindsey x
Clear All Modify Search
Authors: and

Turfgrass management includes many different components and without proper management turfgrass aesthetics will diminish. In addition, mismanagement of turfgrass systems could lead to negative environmental impacts. This situation creates the need for Extension agents to deliver turfgrass management educational and outreach programs to the various stakeholders and the general public. However, Extension agents require professional development in terms of turfgrass management. A needs assessment of [State] Extension agents was conducted at the University of Florida to determine the professional development needs relating to turfgrass management. Through this needs assessment, there were 51 individual competencies identified that were categorized into nine distinct competency domains. In general, the highest priority relative to professional development needs were related to the pest management (i.e., disease, insect, weeds, and nematodes) competency domains. Extension specialists can use the information from this needs assessment to adjust current and tailor new turfgrass management professional development programs to address the identified needs with the highest priority [i.e., greatest mean weighted discrepancy score (MWDS)]. Professional development programs could include creating new or adjusting educational materials and resources for the needs identified, in-service trainings for Extension agents to provide additional education, series of academies to provide baseline knowledge to Extension agents, and an online database to provide information and guidance. In addition, the results and needs identified from this needs assessment can be used as a basis for obtaining educational funding.

Open Access

Stemphylium leaf spot, caused by Stemphylium vesicarium, and white rust, caused by Albugo occidentalis, can cause significant losses in spinach production. Management of these foliar diseases of spinach has become increasingly challenging with the development of fungicide resistance in some pathogen populations, high planting density and overhead irrigation used for baby leaf spinach production, and the fact that >60% of fresh market spinach production in the United States is certified organic. To identify spinach cultivars with resistance to Stemphylium leaf spot and white rust, a field trial was performed near Crystal City, TX, USA, in 2021 (79 cultivars), 2022 (87 cultivars), and 2023 (63 cultivars). Each year, the plants were inoculated with S. vesicarium and rated for disease severity. Plants were also rated for white rust severity that resulted from natural infection during the 2021 and the 2022 trials. During each trial, 11% to 27% of the cultivars were identified as resistant to Stemphylium leaf spot, and another 29% to 48% had moderately resistant reactions. In contrast, only 5 of 79 cultivars (6%) in the 2021 trial did not develop symptoms of white rust, and all 87 cultivars evaluated in the 2022 trial had symptoms of white rust. Although there was no significant correlation between mean Stemphylium leaf spot ratings and mean white rust ratings during these trials, the cultivars Colusa, Kodiak, PV-1569, and PV-1664 displayed resistant or moderately resistant responses to both diseases in at least two trials. Therefore, processing and fresh market spinach growers have resistant cultivars from which to select to reduce the economic impacts of Stemphylium leaf spot and white rust.

Open Access

Although irrigation scheduling has been studied for diverse vegetable crops, much less attention has been given to irrigation scheduling for the seed crops on which these production systems rely. In spinach, for which irrigation scheduling needs are likely to vary greatly between seed and leaf production, this leaves seed producers without adequate resources to make irrigation scheduling decisions. Our research sought to fill this gap by evaluating two alternative irrigation scheduling strategies (a publicly available decision-support tool and soil moisture sensors) and four soil moisture thresholds for irrigation for their impacts on vegetative growth, marketable seed yield, seed quality, and the severity of Stemphylium leaf spot (caused by Stemphylium vesicarium and Stemphylium beticola), a common foliar disease of spinach, under sprinkler irrigation. We found that in all 3 years of the study, earlier and more frequent irrigation increased vegetative growth. However, marketable seed yield only increased relative to the control treatment based on farmers’ standard irrigation practices in 1 of the 3 years—a year with an abnormally late planting date. This indicates that vegetative growth is more responsive than seed yield to earlier and more frequent irrigation, and that increases in vegetative growth do not translate directly to increased marketable seed yield. Contrary to the expected increase in Stemphylium leaf spot severity with increasing irrigation, the severity decreased in both years it was measured, likely as a result of the small stature of the spinach seed parent lines used in our study and opportunistic pathogenicity on moisture-stressed plants. These results provide a useful foundation from which spinach seed producers can make irrigation management decisions for their crops that underpin a valuable global industry.

Open Access

Estimates of long-term freeze-risk aid decisions regarding crop, cultivar, and rootstock selection, cultural management practices that promote cold hardiness, and methods of freeze protection. Citrus cold hardiness is mostly a function of air temperature, but historical weather records typically contain only daily maximum (Tmax) and minimum (Tmin) air temperatures. A mathematical model was developed that used Tmax and Tmin to estimate air temperature every hour during the diurnal cycle; a cold-hardiness index (CHI500) was calculated by summing the hours ≤10°C for the 500 h before each day; and the CHI500 was regressed against critical temperatures (Tc) that cause injury. The CHI500 was calculated from a weather station located within 0.1 km of an experimental grove and in the middle of the satsuma mandarin (Citrus unshiu Marc.) industry in southern Alabama. Calculation of CHI500 was verified by regressing a predicted CHI500 using Tmax and Tmin, to a measured CHI500 calculated using air temperatures measured every hour for 4 winter seasons (1999-2003). Predicted CHI500 was linearly related to measured CHI500 (r 2 = 0.982). However, the slope was a little low such that trees with a CHI500 = 400, near the maximum cold-hardiness level achieved in this study, had predicted Tc that was 0.5 °C lower than measured Tc. Predicted and measured Tc were similar for nonhardened trees (CHI500 = 0). The ability of predicted Tc to estimate freeze injury was determined in 18 winter seasons where freeze injury was recorded. During injurious freeze events, predicted Tc was higher than Tmin except for a freeze on 8 Mar. 1996. In some freezes where the difference in Tc and Tmin was <0.5 °C there were no visible injury symptoms. Injury by the freeze on 8 Mar. 1996 was due, in part, to abnormally rapid deacclimation because of defoliation by an earlier freeze on 4-6 Feb. the same year. A freeze rating scale was developed that related the difference in Tc and Tmin to the extent of injury. Severe freezes were characterized by tree death (Tc - Tmin > 3.0 °C), moderate freezes by foliage kill and some stem dieback (1.0 °C ≤ Tc - Tmin ≤ 3.0 °C), and slight freezes by slight to no visible leaf injury (Tc - Tmin < 1.0 °C). The model was applied to Tmax and Tmin recorded daily from 1948 through 2004 to estimate long-term freeze-risk for economically damaging freezes (severe and moderate freeze ratings). Economically damaging freezes occurred 1 out of 4 years in the 56-year study, although 8 of the 14 freeze years occurred in two clusters, the first 5 years in the 1960s and 1980s. Potential modification of freeze-risk using within-tree microsprinkler irrigation and more cold-hardy cultivars was discussed.

Free access