Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: A. Stanley Culpepper x
Clear All Modify Search

Halosulfuron is a proposed alternative to methyl bromide for managing nutsedges (Cyperus spp.) in several vegetable crops, including cucurbits. Field studies were conducted to evaluate the crop sensitivity to halosulfuron in a spring squash (Cucurbita pepo L.)—fall cucumber (Cucumis sativus L.) rotation from 2000 to 2002. Treatments included application of halosulfuron to the soil surface after forming the bed, but before laying mulch (halosulfuron-PRE), halosulfuron applied through drip irrigation (halosulfuron-DRIP) after forming bed and laying mulch, metham applied through drip irrigation after forming bed and laying mulch, a nontreated control with mulch, and nontreated control without mulch. Each treatment was applied to both direct seeded and transplanted zucchini squash. Halosulfuron treatments reduced squash plant diameter relative to metham, however plant diameters in halosulfuron-PRE (transplant and direct seed) and halosulfuron-DRIP (transplant) treatments were not different from the nontreated control. Halosulfuron-PRE delayed squash fruit production relative to the mulched nontreated control. However, application of halosulfuron-PRE and halosulfuron-DRIP did not reduce squash yield at the conclusion of the season, relative to the nontreated control. Cucumbers were transplanted and direct seeded into previous squash plots and received either an application of halosulfuron-DRIP, or were not treated. Differences in cucumber yields were not detected with second crop treatments. Cucumbers appear to have adequate tolerance to halosulfuron, making it a potential replacement for methyl bromide for nutsedge control. Suppression of early season squash growth by halosulfuron may hinder the adoption of halosulfuron as a methyl bromide alternative for squash.

Free access

Planting cole crops and leafy greens in plastic mulch free of summer and winter annual broadleaf weeds is challenging. Because these crops are often grown as a second or third crop on mulch, weeds emerge in previously punched plant holes, tears in plastic, and row middles. Without the ability to use tillage and with limited herbicide options available for weed control, achieving a weed-free planting window is not often feasible. Additional herbicide options are needed, but their interaction with plastic mulch must be understood. Therefore, research has determined the persistence of preplant applications of 2,4-D tank-mixed with glyphosate applied over plastic mulch. Analytical laboratory analyses of plastic samples from field experiments, in conjunction with bioassays using broccoli (Brassica oleracea var. botrytis L.) and collard (Brassica oleracea var. viridis L.), evaluated herbicide dissipation. Analytical studies determined that 0.5 cm of irrigation after herbicide application and 1 day before planting removed 99% of 2,4-D, and 100% of glyphosate from the plastic mulch. Waiting an additional 14 days after application and irrigation further reduced the amount of 2,4-D on the plastic mulch 88% to 95%. For the field bioassay, preplant applications of 2,4-D tank-mixed with glyphosate resulted in 7% or less visual broccoli or collard injury without influencing crop growth, biomass, early season yield, or total yield as long as the mulch was washed with 0.5 cm of irrigation before planting. These studies also demonstrated there were no differences between the 1× and 2× use rates with respect to all response variables measured. Results suggest that 2,4-D and glyphosate can be effectively removed from the surface of plastic mulch with irrigation or rainfall before planting broccoli and collard.

Open Access