Search Results

You are looking at 1 - 8 of 8 items for

  • Author or Editor: A. Chandra x
Clear All Modify Search

Tomatoes (Lycopersicon esculentum Mill. cv. Sunstart) were grown in a greenhouse during Summer 1999 and again in Winter 2000. Two available soil water (ASW) deficit thresholds, 65% and 80%, at which plants were irrigated to field capacity were factorially combined with five irrigation timing patterns: 1) no water stress; 2) stress throughout the entire growing season; 3) stress during first cluster flowering and fruit set 4) stress during first cluster fruit growth; and 5) stress during first cluster fruit ripening. Crop yields, water use efficiency, as well as maximum and minimum equatorial fruit diameters and fruit height were measured. Quality parameters of soluble solids, pH, and fruit color were also measured. Water stress throughout the growing season significantly reduced yield and fruit size, but plants stressed only during flowering showed fewer but bigger fruit than completely non-stressed plants. Consequently, on a weight basis the stressed at flowering and nonstressed plants had similar yields. Nonstressed and flowering-stressed fruit showed lower soluble solids and a lighter color of red ripe fruit than the other stress treatments. No significant differences in yield or quality were found between the two stress levels (65% vs. 80% ASW depletion before irrigation). Water stress only during flowering resulted in better yields and quality than stress at other specific developmental stages or at all times, but equal or poorer yields and water use efficiency than nonstressed plants.

Free access

In a 2-year study (1993-1994), `New Yorker' tomato (Lycopersicon esculentum Mill.) plants grown in field lysimeters were subjected to four watertable depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface) factorially combined with 5 potassium/calcium fertilization combinations. Mature-green fruit from four replicates of each treatment were stored at 5C for 21 days, and fruit color was monitored with a tristimulus colorimeter. Fruit were subsequently allowed to ripen at 20C for 10 days, at which time chilling injury was assessed on the basis of delayed ripening and area of lesions. Potassium and calcium applied in the field had no effect on chilling tolerance of the fruit. In the drier year (1993), shallower WTD treatments generally yielded fruit that changed color less during chilling and were more chilling-sensitive based on delayed ripening. In the wetter year, differences in color change and chilling tolerance between WTD, if any, were small. Over both years, lesion area varied with WTD, but not in a consistent manner. Based on these results, we suggest that differences in water availability should be considered when studying tomato fruit chilling.

Free access

Excessive nitrogen (N) applications can increase surface and water contamination, and leaching losses may occur when N fertilizer rates are too high relative to crop demands and soil N availability. Quantifying nutrient inputs, cycling, and outputs from orchards provides a method to measure surplus of nutrients, particularly N, that may leach or runoff. We conducted a long-term study to develop N budgets based on observed nutrient dynamics under four groundcover management systems (GMSs) with and without N fertilization. Four GMS treatments were randomly assigned to 12 plots and maintained since 1992 in 2-m-wide strips within tree rows: pre-emergence residual herbicide (PreHerb), post-emergence herbicide (PostHerb), mowed-sod (Sod), and hardwood bark mulch (Mulch). We measured system N inputs in fertilizer, mulch biomass, rain, and irrigation water; N outputs in harvested fruit, surface runoff, and subsurface leaching; and internal N cycling from surface vegetation, soil mineralization, leaf fall, and pruned wood. For the year with N fertilizer (2005), the overall N balance was positive (inputs exceeded outputs) in all GMSs but greater in the PostHerb and Mulch treatments. In the year without N fertilizer (2007), the overall N balance was negative for PreHerb and PostHerb and positive for Mulch and Sod treatments. Soil mineralization and recycling groundcover biomass accounted for greater than 60% of internal N fluxes, and harvested fruit represented greater than 70% of N outputs from the system during both years. During the year with N fertilizer, N losses were 1% to 4% and 18% to 22% through surface runoff and subsurface leaching, respectively. During the year without fertilizer, surface runoff N losses were twice the subsurface leaching N losses in all GMSs.

Free access

In a 2-year study (1993-94), tomato (Lycopersicon esculentum Mill. `New Yorker') plants grown in a sandy loam soil in field lysimeters were subjected to four water table depth (WTD) treatments (0.3, 0.6, 0.8, and 1.0 m from the soil surface). In 1994, precipitation during the flowering stage was far above average and apparently led to waterlogging in the shallowest WTD treatment, while in the drier year (1993), the deepest WTD treatment suffered from drought stress. In general, over the 2 years, the 0.6-m WTD showed the best yields and largest fruit, while the 1.0-m WTD showed the lowest yields and smallest fruit. However, the incidence of catfacing, cracking, and sunscald was generally higher in the 0.6 m WTD treatment and lower in the 1.0-m WTD treatment. Furthermore, fruit firmness was generally greatest for the two deeper WTD than for the shallower WTD. To strike a balance between yield and quality, a WTD of between 0.6- and 0.8-m is recommended for tomato production on sandy loam soils.

Free access

A 3-year study was conducted to evaluate the comparative performance of zoysiagrass (Zoysia spp.) cultivars for shaded environments in which inputs are minimized. Included in the study were commercial cultivars Diamond, Cavalier, Royal, Shadow Turf, Zorro, Zeon, Jamur, Crowne, Palisades, and Meyer. In July 2006, grass plugs were planted in a shade nursery comprised of live oak trees providing 89% shade. From 2007 to 2009, turf plots were periodically evaluated for quality, density, color, vertical canopy height, and extent of lateral spread. Overall turfgrass quality was noticeably reduced by the heavily shaded environment; however, some cultivars attained acceptable levels during midsummer periods. A turf performance index (TPI) was generated for ranking the cultivars that represented the number of times an entry occurred in the top statistical group across all parameters and rating dates. ‘Royal’, ‘Zorro’, and ‘Shadow Turf’ were the cultivars ranking in the top statistical grouping most often throughout the study. The results suggest that Z. matrellas may be better adapted than Z. japonicas for heavily shaded environments where inputs are conserved.

Free access

St. augustinegrass [Stenotaphrum secundatum (Walt.) Kuntze] is a popular turfgrass in the southern United States as a result of its superior shade tolerance and relatively low input requirements. However, it is the least cold-tolerant of commonly used warm-season turfgrass species. ‘Raleigh’, released in 1980, has superior cold tolerance and is adapted and widely used in U.S. Department of Agriculture hardiness zones 8 to 9. More than 25 years after its release, ‘Raleigh’ is still the industry’s standard in terms of cold tolerance. However, the original foundation and breeder stock fields of the cultivar have been lost, placing the integrity of the cultivar at risk. The objectives of this study were to investigate whether current ‘Raleigh’ production fields across the southern United States are true to the original source. In this study, 15 amplified fragment length polymorphism (AFLP) primer combinations were used to assess levels of genetic variability among three original stocks of ‘Raleigh’ and 46 samples obtained from sod farms and universities in six states. Genetic similarities among the original stocks were Sij = 1, whereas similarities between this group and all other samples ranged from 0.24 to 1.0. Results based on cluster analysis, principal coordinate analysis, and analysis of molecular variance (AMOVA) revealed separation between original stocks of ‘Raleigh’ and some commercial samples. Results from this study offer further evidence that molecular markers provide a useful and powerful technique for identity preservation of clonally propagated cultivars and the detection of genetic variants in sod production fields and turfgrass breeding programs.

Free access

Zoysiagrass (Zoysia spp.) grown under shade on golf courses and in home lawns is slow to recover from damage and declines in quality over time. We evaluated stolon growth and tillering of ‘Meyer’ and Chinese Common (both Z. japonica Steud.); ‘Zorro’, ‘Diamond’, and ‘Cavalier’ [all Z. matrella L. (Merr.)]; ‘Emerald’ (Z. matrella × Z. pacifica Goudsw.); and six experimental progeny from ‘Emerald’ × Z. japonica and reciprocal crosses of Z. japonica × Z. matrella under silver maple (Acer saccharinum L.) shade and in full sun in 2008 and 2009 in Manhattan, KS. A single 6-cm diameter plug was planted in the center of 1.2 m × 1.2-m plots, and data were collected weekly on the number of stolons, stolon elongation, and number of stolon branches. Tiller number was collected at the start and end of each study period, and biomass (excluding roots) was determined at the end of each season. Zoysiagrasses under an average of 76% tree shade exhibited reductions of 38% to 95% in stolon number; 9% to 70% in stolon length; 10% to 93% in stolon branching; and 56% to 98% in biomass. Seven of the 10 grasses exhibited a decline in tiller number in each experiment; none of the grasses differed from ‘Meyer’ in percentage change in tiller number under shade. ‘Emerald’, ‘Cavalier’, ‘Zorro’, and several progeny from crosses between ‘Emerald’ × Z. japonica or reciprocal crosses of Z. matrella × Z. japonica produced more, longer, or more highly branched stolons than ‘Meyer’, suggesting they may have improved recovery potential in shade.

Free access