Search Results

You are looking at 1 - 5 of 5 items for

  • Author or Editor: A. Baameur x
Clear All Modify Search
Free access

T.K. Hartz, A. Baameur and D.B. Holt

A study was conducted to determine the feasibility of fieldscale CO2 enrichment of vegetable crops grown under tunnel culture. Cucumber, squash and tomato were grown under polyethylene tunnels in a manner similar to commercial practices in southern California. The buried drip irrigation system was used to uniformly deliver an enriched CO2 air stream independent of irrigation. CO2 concentration in the tunnel atmosphere was maintained between 700-1000 ppm during daylight hours. Enrichment began two weeks after planting and continued for four weeks. At the end of the treatment phase, enrichment had significantly increased plant dry weights. This growth advantage continued through harvest, with enriched plots yielding 20%, 30% and 32% more fruit of squash, cucumber and tomato, respectively. As performed in this study, the expense of CO2 enrichment represented less than a 10% increase in total pre-harvest costs. Industrial bottled CO2 was used in this study; since bottled CO2 is captured as a byproduct of industrial processes, this usage represents a recycling of CO2 that would otherwise be vented directly to the atmosphere.

Free access

T.K. Hartz, A. Baameur and D.B. Holt

The feasibility of field-scale CO2 enrichment of vegetable crops grown under tunnel culture was studied with cucumber (Cucumis saivus L. cv. Dasher II), summer squash (Cucurbita pepo L. cv. Gold Bar), and tomato (Lycopersicon escukntum Mill. cv. Bingo) grown under polyethylene tunnels. The drip irrigation system was used to uniformly deliver a CO2-enriched air stream independent of irrigation. Carbon dioxide was maintained between 700 and 1000 μl·liter-1 during daylight hours. Enrichment began immediately after crop establishment and continued for ≈4 weeks. At the end of the treatment phase, enrichment had significantly increased plant dry weight in the 2 years of tests. This growth advantage continued through harvest, with enriched cucumber, squash, and tomato plots yielding 30%, 20%, and 32% more fruit, respectively, in 1989. In 1990, cucumber and squash yields were increased 20%, and 16%, respectively. As performed, the expense of CO2 enrichment represented less than a 10% increase in total preharvest costs. A similar test was conducted on fall-planted strawberries (Fragaria × ananassa Duch. cvs. Irvine and Chandler). Carbon dioxide enrichment under tunnel culture modestly increased `Irvine' yields but did not affect `Chandler'.

Free access

T.K. Hartz, L.J. Kies, A. Baameur and D.M. May

Application of DCPTA, as a seed treatment and a foliar spray, was evaluated for effects on productivity and fruit quality of processing tomato (Lycopersicon esculentum Mill.) and fresh-market pepper (Capsicum annuum L.). Two field trials for each crop were conducted in California during 1992. No DCPTA treatment was effective in increasing vegetative growth or fresh fruit yield of either crop at any site. Total soluble solids concentration and color of tomato fruits were unaffected by DCPTA, regardless of application method. We conclude that DCPTA is not a useful production aid for field-grown tomato or pepper. Chemical name used: 2-(3,4-dichlorophenoxy) triethylamine (DCPTA).

Free access

T.K. Hartz, K.S. Mayberry, M.E. McGiffen, M. LeStrange, G. Miyao and A. Baameur

Free access

Milton E. McGiffen Jr., John Manthey, Aziz Baameur, Robert L. Greene, Benjamin A. Faber, A. James Downer and Jose Aguiar

A 1992 article by Nonomura and Benson (Proc. Natl. Acad. Sci. 89:9794-979X) reported increased yield and drought tolerance in a wide range of C3 species following foliar applications of methanol. The article was widely reported in the trade and popular press, which created a huge grower demand for information on the use and efficacy of methanol. To test the validity of the reports, we applied methanol with and without nutrients to a wide range of crops across California following Nonomura and Benson's (1992) protocol. Crops included watermelon, creeping bentgrass, lemons, savoy cabbage, carrots, romaine lettuce, radish, wheat, corn and peas. Environments included the greenhouse and field tests in coastal, inland valley, and desert locations. To test whether methanol improved drought tolerance, the savoy cabbage and watermelon experiments included both reduced and full irrigation. In no case was yield increased or drought tolerance attributable to methanol treatment. In some cases, methanol caused significant injury and decreased yield.