Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Yu-Chun Chen x
- Journal of the American Society for Horticultural Science x
Phalaenopsis is currently the world’s number one potted flower crop. It is a slow-growing plant that responds slowly to nitrogen (N) fertilization and is noted for great resilience against N deficiency. Despite the great significance of N during the cultivation of Phalaenopsis, little has been studied on the uptake and partitioning of N in this crop. The stable isotope 15N was used as a tracer to investigate the uptake and partitioning of N and the roles of organs in sink and source relationship of N partitioning during different stages in Phalaenopsis. Fertilizer labeled with 15N was applied to Phalaenopsis Sogo Yukidian ‘V3’ during the vegetative growth stage on different parts of plants. Both leaves and roots were able to take up N. Nitrogen uptake efficiency of young roots was the highest, followed by old roots, whereas that of leaves was lowest. No difference of N uptake efficiency was found between the upper and lower leaf surfaces. Movement of fertilizer N to the leaves occurred as early as 0.5 day after fertilizer application to the roots. The partitioning of N depended on organ sink strength. During the vegetative growth stage, newly grown leaves and newly formed roots were major sinks. Sink strength of leaves decreased with the increase in leaf age. Stalks and flowers were major sinks during the reproductive growth stage. Mature leaves were a major location where N was stored and could serve as a N source during the reproductive growth stage and also for new leaf growth.