Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Yin-Tung Wang x
  • HortTechnology x
Clear All Modify Search
Author:

Dendrobium Linnapa `No. 3' plants were potted one per 1.75-liter pot with large or small fir bark with or without 30% peatmoss (by volume before mixing). Plants in each medium were fertilized at each or every third irrigation with 1 g·liter−1 of 20N-8.6P-16.6K fertilizer. Neither medium nor fertilization frequency affected flowering date of the first pseudobulb. Adding peatmoss to both types of bark resulted in taller first pseudobulbs. Peatmoss in the large bark promoted the production of more inflorescences and flowers (20) compared to the bark alone (11). Constant fertilization promoted the early emergence and development of the second pseudobulb and resulted in more inflorescences and flowers (21) than intermittent fertilization (12). Vegetatively propagated Phalaenopsis Taisuco Kochdian were planted in 0.5-liter pots with 1) equal volumes of no. 3 perlite, Metro Mix 700, and charcoal (PMC); 2) 100% large fir bark; or 3) 40% medium fir bark, 20% peatmoss, 10% each of no. 3 and no. 2 perlite, 10% vermiculite, and 10% ParGro rockwool (RM). Plants in PMC produced twice the number of new leaves and 1.5 -fold more leaf area than those in the large bark. PMC and RM resulted in similar shoot weights, but the latter enhanced flower count due to more lateral inflorescences. Most (80%) of the roots on plants in the bark were hanging out of the pots, whereas nearly all the roots remained in the pots with PMC. Although medium had no effect on flowering date, flowers on plants produced in PMC and RM were 10% larger than in those on plants produced in bark.

Full access
Author:

Vegetatively propagated liners of six hybrid anthurium cultivars (Anthurium Schott), `Pink Aristocrat', `Patty Anne', `Purple Viking', `Royal Pink', Royal Orange', and `Royal Red', were planted in pots and grown under warm [maximum 30 °C (86 °F)] or hot [maximum 35 °C or (95 °F)] conditions with or without a single foliar application of 500 mg·L-1 (ppm) GA3 and evaluated after 7, 9, and 13 months. GA3, when applied 7 months after planting, did not promote flower production or result in taller plants. Plants in warm and hot areas, except for `Pink Aristocrat', had similar degrees of foliage injury in April, but those in the warm environment had better quality in July than those in the hothouse. Yellow leaves and necrosis on leaf margins were apparent on plants in the hot area. `Pink Aristocrat' was the most (>20 flowers) and `Royal Red' was the least (2 flowers) floriferous after 1 year. Flower color of `Royal Red' was unaffected by high temperature, whereas flowers of the other cultivars faded under heat. Growing these anthurium cultivars at maximum 30 °C (86 °F) air temperatures is recommended for good quality and high flower count.

Full access

Growers realize the importance of nitrogen (N) on the vegetative growth of phalaenopsis orchids (hybrids of Phalaenopsis sp.), but often overlook its influence on reproductive growth. Low N may result in slow plant growth, pale-green leaves, abscission of lower leaves, and few flowers in phalaenopsis. Increasing N concentration up to 200 mg·L−1 promotes leaf growth and increases flower count. High N concentration promotes lateral branching on the flowering stalk, thereby greatly increasing the total flower count and elevating the commercial value. It is important that N be continually applied during the forcing period for best flowering performance, particularly for those that had undergone international shipping. For the vegetative phalaenopsis plants that are induced to flower without being shipped internationally, the N that is already in the plant before spiking provides 43% and the N being absorbed by roots after cooling provides 57% of the total N in the inflorescence at time of visible bud. When insufficiently fertilized or no fertilization is applied during the forcing period, more of the existing N in a plant is mobilized for inflorescence development. Phalaenopsis roots can take up all three forms of N [i.e., nitrate (NO3-N), ammonium (NH4-N), and urea] directly. In two studies, phalaenopsis plants were supplied with the same amount of total N but with varying NO3-N from 100%, 75%, 50%, 25%, to 0% (a common N concentration was achieved by the substitution of the respective balance with NH4-N). Plants were smaller when receiving 75% or 100% NH4-N with a tendency of decreasing top leaf width and whole-plant leaf spread as NO3-N decreased from 100% to 0%. Spiking was delayed and spiking rate decreased when plants were grown in sphagnum moss, but not a bark mix, and received more than 50% of the N in NH4-N. As the ratio between NO3-N and NH4-N increased, flowers became increasingly larger. The negative effects of low ratios of NO3-N to NH4-N were more severe in the second flowering cycle. When supplied with 50% or more NH4-N, the absorption of cations by phalaenopsis roots declined, with reduced concentrations of calcium and magnesium in plants, while symptoms of ammonium toxicity appeared, including growth retardation, chlorotic leaves, and necrotic roots. In conclusion, adequate N and its continual supply during both vegetative and reproductive stages are recommended for the best growth and flowering of phalaenopsis. Since phalaenopsis plants prefer N in the NO3-N form, it is suggested that growers choose and apply a fertilizer with nitrate as the major N source.

Free access