Search Results

You are looking at 1 - 10 of 67 items for

  • Author or Editor: Yin-Tung Wang x
Clear All Modify Search
Author:

Abstract

Viterra hydrogel at rates of 0, 1.75, or 2.50 kg·m−3 was tested for the production of three tropical ornamental plant species in two or all of the three media. These were a commercial peat-lite medium (SUN), a medium consisting of equal volumes of peatmoss, bark, and sand (PBS), and a mix containing equal volumes of peatmoss and bark (PB). Codiaeum was grown in SUN and PBS, Dieffenbachia was produced in all three media, and Hibiscus was planted in SUN and PB. Codiaeum variegatum (L.) Blume ‘Norma’ and Dieffenbachia ‘Camille’ grew more and required a longer time to reach initial wilting when grown in SUN than PBS. Hibiscus rosa-sinensis L. ‘Brilliant Red’ had similar growth in SUN and PB. In general, hydrogel had no beneficial effect on plant growth in a greenhouse. Hydrogel extended the time required to reach initial wilting of C. variegatum by 3 days (from 24 to 27 days), but had no effect on Dieffenbachia. Leachate from PBS had higher pH and lower electrical conductance (EC) than that from SUN. Hydrogel had no effect on leachate pH, but decreased EC of the leachate for C. variegatum used at the 2.5 kg·m−3 rate and for H. rosa-sinensis at both rates.

Open Access
Author:

Abstract

Removing 33% or 100% of the Easter lily (Lilium longiflorum Thunb. ‘Nellie White’) mother scales when flower buds were 1.3 cm in length, in conjunction with flower bud removal at the 3-cm stage, increased daughter bulb dry weight by 21% and 45%, respectively, when plants were harvested after 13 weeks. Size of the remaining mother scales in partially de-scaled plants was estimated to be 30% larger than their counterparts in intact bulbs. Growth of the Easter lily bulb is likely limited by source carbon supply.

Open Access
Author:

Abstract

Compared to floriculture crops, relatively little research has evaluated the effects of growth retardants on production and interior quality of foliage plant species. Ancymidol decreased intemode length in several foliage plant species (1–3), but not china green or dieffenbachia (3). Ancymidol improved interior performance of Epipremnum aureum and Pilea depressa (2). This experiment was conducted to determine the effect of ancymidol on growth of Syngonium podophyllum ‘White Butterfly’ in production and simulated interior conditions.

Open Access
Author:

Foliar application of 500 or 1000 mg BA or PBA/liter to stock plants of golden pothos [Epipremnum aureum (Linden & Andre) Bunt.] induced axillary bud elongation but did not promote growth of cuttings taken from these stock plants. Cuttings from plants treated with BA + GA4+7, each at 1000 mg·liter-1, died. Plants grown under 1000 μmol·s-1·m-2 had more but smaller leaves than those under 420 μmol·s-1·m-2. Cuttings produced under the higher light level grew more rapidly. Leaf area increased while stem length decreased as Osmocote slow-release fertilizer (18N-2.6P-10K) increased from 4 to 16 kg·m-3. A 24N-3.5P-13.3K water-soluble fertilizer applied at the rate of 0.42 g/500 ml weekly produced the best plants and resulted in the best cutting growth. Cuttings taken from stock plants receiving Osmocote at 4 kg·m-3 grew slower than those produced at other rates. Placement of cuttings in a mist-propagation bed for 1 or more weeks resulted in an accelerated growth rate relative to nonmisted cuttings. Chemical names used: N-(phenylmethyl)-1H-purin-6-amine (BA); N-(phenylmethyl)-9-(tetrahydro-2H-pyran-2-yl)-9H-purin-6-amine (PBA); (1α,2β,4aα,10β) 2,4a,7-trihydroxy-l-methyl-8-methylenegibb-3-ene-1,10-dicarboxylic acid l,-4a-lactone (GA4+7).

Free access
Author:

Abstract

Croton (Codiaeum variegatum Blume cv. Craigii) cuttings, enclosed in polyethylene bags, were placed in light (20 μmol·s−1·m−2) or darkness at 15°, 20°, or 30°C for 5, 10 or 15 days (simulated shipping) and then placed in a mist bed to root for 4 weeks. Final leaf loss in most of the treatments was <7%. Cuttings in simulated shipping for 15 days at 30° in darkness and light had 31% and 56% final leaf drop, respectively. These cuttings also produced fewer roots than controls. Root length increased with increased shipping duration and shipping temperature from 15° to 20°, without further increase at 30°. Regardless of temperature and duration in simulated shipping, cuttings shipped in darkness had roots 2.5 to 5 cm longer than those shipped in the light.

Open Access
Author:

Abstract

Ficus benjamina and Codiaeum variegatum ‘Gold Dust’ stem tip cuttings were rooted in a mist bed at 290 or 90 µmols·m–2 Photosynthetic photon flux (PPF) with or without 28° ± 1°C medium heating and then potted. Number of roots in C. variegatum was unaffected by either PPF or medium heating; however, both factors enhanced root elongation. Forty days after potting, cuttings rooted under 290 µmol·s–1·m–2 had more lateral shoots than those rooted under 90 µmol·s-1·m–2 PPF. Although cuttings rooted in heated medium under the lower PPF had roots more than twice as long as those on cuttings rooted in unheated medium under the high PPF, it had little effect on subsequent shoot growth. F. benjamina rooting was improved in heated medium and was not affected by PPF. Unheated cuttings rooted better under high than low PPF. Shoot growth 10 weeks after transplanting was unaffected by the initial differences in root grade.

Open Access
Author:

Leaf blades, axillary buds, shoot tips, green bark, suberized bark, or the whole plant of container-grown Hibiscus rosa-sinensis L. cv. Jane Cowl were treated with uniconazole. Applying uniconazole (50 mg·liter-1) to axillary buds or the green bark below a bud immediately after pruning limited elongation of the first three internodes. Length of the fourth internode was unaffected, regardless of the site of uniconazole application. When used on plants with 24-day-old shoots, uniconazole (40 mg·liter -1) applied to the whole plant provided the only satisfactory height control. Leaf size was reduced by nearly 50%, with a concomitant increase (12%) in fresh weight per unit area. GA3 (50 mg·liter-1, was more effective in promoting elongation of shoots previously retarded with a drench application of uniconazole (0.1 mg/2.6-liter pot) when applied to the whole shoot, leaf blades, or shoot tip. Application of GA, only to the stein surface, whether old or young, did not effectively encourage the growth of shoots of plants previously treated with uniconazole. Chemical names used: (E)-1-(p-chlorophenyl) -4,4-dimethyl-2-(1,2,4-triazole-1-yl)-1-penton-3-ol (uniconazole); analogue of (1α,2β,4 α,4bβ,10β)-2,4a,7-trihydroxy-1-methyl-8-methylenegibb-3-ene-1,10 dicarboxylic acid 1,4a-lactone (GA3).

Free access
Author:

Lilium longiflorum Thunb. `Nellie White' plants were selected when their first flower buds reached 2 or 5 cm in length, sprayed with 2 mL of PBA at 0 or 500 mg·L–1, and then placed under 1440 or 60 μmol·m–2·s–1 photosynthetic photon flux (PPF) during flowering. PBA resulted in delayed anthesis and increased dry matter accumulation in flowers under the high PPF but had no effect under the low PPF. PBA did not decrease the severity of flower bud abortion under the low PPF. Application of PBA induced the formation of numerous bulbils in the leaf axils. Regardless of PPF, PBA-treated plants had less dry weight in the main bulbs than the control plants. Chemical name used: N-(phenylmethyl)-9-(tetra-hydro-2H-pyran-2-yl)-9H-purin-6-amine (PBA).

Free access
Author:

It not clear how a prolonged period of cool days and warm nights affect Phalaenopsis hybrids which take up CO2 mainly at night. The `Lava Glow' clone of the hybrid Doritaenopsis (Phal. Buddha's Treasure × Doritis pulcherrima) 15 cm in leaf span were subjected to day/night (12 h each daily) temperatures of 30/25, 25/30, 25/20, or 20/25 °C at 170 umol.m-2 .s-1 PPF. After nine months, plants under the higher average daily temperature (ADT) produced more leaves. Those grown at 30/25 °C had the largest leaf span and total length of the new leaves. Plants under 30/25, 25/30, 25/20, or 20/25 °C had 5.0, 4.7, 3.6, and 2.8 new leaves and 72, 61, 42, and 28 cm in total new leaf length, respectively. Cool days and warm nights resulted in smaller leaf span and reduced leaf growth, particularly at 20/25 than at 25/30 °C. Within a given ADT, cooler days resulted in shorter leaves. Leaves produced by plants at the lower ADT had a smaller length to width ratio and the more desirable oval shape. The most striking effect of 20/25 °C was that 14 out of 15 plants bloomed, whereas only 5 plants under 25/20 °C and none in the 30/25 or 25/30 °C treatment flowered. In a second experiment, 18-22 cm plants were subjected to 30/20, 20/30, 25/15, or 15/25 °C. After 29 weeks, similar results were obtained. All plants under 15/25 °C bloomed, whereas none in the other treatments produced flowers. Long-term exposure to 15/25 °C resulted in slow leaf production and undesirable small leaves. These results suggest that, with day temperatures in the 20-15 °C range, nights 10-5 °C warmer are not desirable for rapid vegetative growth. However, cool days and warm nights may be used to effectively induce the flowering process.

Free access
Author:

Aloe barbadensis (Aloe vera) plants remain in production fields for several years, with their lower leaves harvested periodically. A long-term experiment was initiated in November 1993 to determine the effects of fertilization and severeness of harvest on leaf yield. Plants were grown in large pots with or without monthly applications of a 20N–8.6P–16.6K soluble fertilizer from March to October. Beginning in June 1994, the lower leaves were harvested quarterly to have 18, 15, or 12 leaves remaining. Fertilization doubled the number of leaves harvested and tripled the total yield over a 2-year period. The lower leaves on the nonfertilized plants, particularly on plants with 18 leaves remaining, sometimes became dry or partially dry at harvest. The initial quarterly yield and cumulated yield were higher in plants with 12 leaves remaining; however, this trend disappeared over time. The fertilized plants produced an average of 10 kg per plant, while the nonfertilized plants produced only 3.2 kg per plant annually. At several harvests, plants with 18 leaves remaining had higher % dry mass in the inner semi-translucent tissue than those having 12 leaves. Leaves of nonfertilized plants had high % dry mass in the inner leaf tissue when harvested in June and September 1995. Plants with 12 leaves remaining can become unstable and the tops break off in gusty wind.

Free access