Search Results

You are looking at 1 - 10 of 60 items for :

  • Author or Editor: Yang Li x
  • HortScience x
Clear All Modify Search

In recent years, air circulation has been used in protected cultivation to improve the microenvironment around seedlings, which in turn enhances photosynthesis and seedling growth. However, a practical and precise air circulation device has not yet been reported, especially one for growing seedlings in a greenhouse. Considering the use of a seedbed in seedling cultivation, a blower that can move back and forth on the seedbed and accurately control the air velocity is designed. In this experiment, we take the nonblowing treatment as the control (CK); three air velocities (0.3, 0.6, and 0.9 m/s) were selected to investigate the effect of interval blowing on the microenvironment of the canopy, physiology of seedling growth, stomatal characteristics of leaves, and stem mechanics of tomato seedlings. The three air velocities were found to significantly reduce the canopy temperature by 0.44, 0.78, and 1.48 °C lower than the CK, respectively, and leaf temperature by 0.83, 1.57, and 2.27 °C lower than the CK, respectively, in cultivated seedlings during summer. The relative humidity of the tomato seedling canopy decreased by 2.7% to 7.0%. Compared with the CK, the plant height of tomato seedlings decreased by 13.54% and root dry mass, root-shoot ratio, and seedling quality index (SQI) increased by 34.63%, 21.43%, and 14.29%, respectively, at 0.6 m/s. In addition, mechanical indexes such as hardness and elasticity of the tomato seedling stem were higher under air disturbance than those of the CK. The best effect was seen in the treatment with the air velocity of 0.6 m/s, in which the hardness and elasticity of the stem base and the first node were significantly higher than that of the CK. In conclusion, air disturbance generated by the air blowing device we designed effectively improved the microenvironment around the plants, enhanced the physiological activity of the seedlings, and thereby promoted seedling growth.

Open Access

Echinacea purpurea L. is one of the important ornamental and medicinal plant species. Ploidy manipulation is a valuable tool for improving plant quality or production in E. purpurea as well as in many other plants. To study the segregation of pure ploidy plantlets from colchicine-induced ploidy chimeras in E. purpurea, we used a chimera plantlet that consisted of 1.93% diploid, 35.04% tetraploid, and 63.03% octoploid cells as the source material for experiments. The results showed that three factors significantly influenced the segregation, i.e., the component ratios of different ploidy cells in the chimera, the number of sequential passages, and the methods of segregation culture of the chimera plantlets. Other factors, such as explant types (i.e., leaf, petiole, or root) and 6-benzyladenine (BA) concentrations (i.e., 0.2, 0.4, 0.8, and 1.2 mg·L−1) occasionally influenced the segregation. Pure chromosome-doubled polyploids are not easily obtained in various plant species, so segregation culture of ploidy chimeras may potentially be more effective. The morphological characteristic and content of cichoric acid were compared among diploid, tetraploid, and octoploid plants. Results indicated that tetraploid and octoploid plants had more stunted growth, larger stomata, lower stomata frequency, more chloroplast number in guard cells, and higher cichoric acid content than original diploid lines.

Free access

Tall fescue [Schedonorus arundinaceus (Schreb) Dumort] has potential in cool arid regions, where it is often subject to salinity stress. The objective of this 2-year field study was to investigate the effect of nitrogen sources on tall fescue turf quality under salinity stress in the northern Great Plains of North America. ‘Wolfpack’, ‘Wolfpack II’, ‘Tar Heel’, ‘Tar Heel II’, ‘Jaguar 3’, ‘Jaguar 4G’, and ‘Arid 3’ were treated with NaCl and CaCl2 in equal amounts. Six N sources were used for fertilization: nitrate-N, urea-N, ammonium-N, urea-N/ammonium-N/nitrate-N, urea-N with urase and nitrification inhibitor, and organic N. Salt treatment reduced turf quality of all cultivars. Turf quality was affected differently by N source. Regardless of salt treatments, urea stabilized with a urease inhibitor and a nitrification inhibitor consistently had the best turf quality. Equal amounts of nitrate, ammonium, and urea-N yielded the lowest turf quality. However, there was no interaction between N source and salt treatment. These results were also supported by green density (GD), dark-green color index (DGCI), shoot chlorophyll (Chl) content, and leaf relative water content (RWC). Tall fescue cultivars responded to salinity treatment differently, with ‘Wolfpack II’ being the cultivar ranked consistently at the top and maintained above the acceptable level of visual quality.

Free access

Light, as the energy and signal sources for plant growth and development, is one of the most important environment factors in recently developed plant factories with artificial light (PFALs). To find the optimal combination of light wavelengths for lettuce (Lactuca sativa cv. ‘Tiberius’) plant growth in a PFAL, four treatments, each using red (R; 662 nm) and blue light (B; 447 nm) with a ratio of 4:1 and photon flux density (PFD) of 150 μmol·m−2·s−1, and mixing, respectively, with 50 μmol·m−2·s−1 of green light (G; 525 nm; RBG), yellow light (Y; 592 nm; RBY), orange light (O; 605 nm; RBO) and far-red light (FR; 742 nm; RBFR), were set up during this experiment. A combination of R and B with a ratio of 4:1 and PFD of 200 μmol·m−2·s−1 was set as the control (RB). The responses of lettuce growth, morphology, anatomical structure of the lettuce leaf, photosynthetic performance, lettuce nutritional quality, and energy use efficiency were investigated. The results showed that RBG, RBO, and RBFR increased the shoot fresh weight of lettuce by 20.5%, 19.6%, and 40.4%, and they increased the shoot dry weight of lettuce by 24.2%, 13.4%, and 45.2%, respectively, compared with those under RB. The Pn under RBY was significantly lower than that under RB, although no significant differences in chlorophyll or carotenoid content were found between RBY and RB. RBG increased the lettuce leaf area, the thickness of the leaf palisade tissue, Pn, and light use efficiency compared with those under RB. Plants grown under RBO showed better photosynthetic capacity, such as higher Pn, ΦPSII, and other photosynthetic parameters. RBFR caused an increase in lettuce leaf area and energy use efficiency, but a decrease in leaf thickness and Pn of the single leaf. Moreover, tipburn injury was observed under RBFR. Therefore, these results demonstrate that RBG and RBO can be considered optimal combinations of light wavelengths for lettuce growth in a PFAL in this experiment, although plant growth can also be improved by using RBFR.

Open Access

Chrysopogon aciculatus (Retz.) Trin. is a perennial turfgrass for its low management and resistance. To develop simple sequence repeat (SSR) markers for C. aciculatus, we used four Roche 454 pyrosequencing, combined with the magnetic bead enrichment method FIASCO (fast isolation by amplified fragment length polymorphism of sequences containing repeats) to isolate from the C. aciculatus. A total of 66,198 raw sequencing reads were obtained with 4289 sequences (6.48%) were fit for primer pair design. One hundred microsatellite loci were selected to test the primer amplification efficiency in 20 accessions, and out of these, 11 loci were polymorphic. The amount of observed alleles ranged from three to six, with an average of 3.64. Nei’s genetic diversity values ranged from 0.085 to 0.493, with an average of 0.293. Shannon’s information index values ranged from 0.141 to 0.686, with an average of 0.428. Twenty accessions were clustered into three groups by unweighted pair-group method with arithmetic means (UPGMA). These SSR markers will provide an ideal marker system to assist with gene targeting, cultivar variety or species identification, and marker-assisted selection in C. aciculatus species.

Free access

This study aimed to investigate the flowering biological characteristics, floral organ characteristics, and pollen morphology of Camellia weiningensis Y.K. Li. These features of adult C. weiningensis plants were observed via light microscopy and scanning electron microscopy (SEM). Pollen viability and stigma receptivity were detected using 2,3,5-triphenyltetrazole chloride (TTC) staining and the benzidine–hydrogen peroxide reaction method. C. weiningensis is monoecious, with alternate leaves and glabrous branchlets. Its flowering period lasts 2 to 4 months, and the flowering time of individual plants lasts ≈50 days, with the peak flowering period from the end of February to the middle of March. It is a “centralized flowering” plant that attracts a large number of pollinators. Individual flowers are open for 12 to 13 days, mostly between 1230 and 1630 hr, and include four to six sepals, six to eight petals, ≈106 stamens, an outer ring of ≈24.6-mm-long stamens, an inner ring of ≈13.4-mm-long stamens, one pistil, and nine to 12 ovules. The flowers are light pink. The style is two- to three-lobed and 16.6 mm long, showing a curly “Y” shape. The contact surface of the style is covered with papillary cells and displays abundant secretory fluid and a full shape, facilitating pollen adhesion. The pollen is rhombohedral cone-shaped, and there are germ pores (tremoids). The groove of the germ pore is slender and extends to the two poles (nearly reaching the two poles). The pollen is spherical in equatorial view and trilobate in polar view. The pollen vitality was highest at the full flowering stage, and the stigma receptivity was greatest on days 2 to 3 of flowering. The best concentration of sucrose medium for pollen germination was 100 g/L. The number of pollen grains per anther was ≈2173, and the pollen-to-ovule ratio was 23,034:1. C. weiningensis is cross-pollinated. Seventy-two hours after cross-pollination, the pollen tube reached the base, and a small part entered the ovary. The time when the pollen tube reached the base after pollination was later than that in commonly grown Camellia oleifera. The results of this study might lay an important foundation for the flowering management, pollination time selection, and cross-breeding of C. weiningensis.

Open Access

Rhododendron delavayi Franch. is an important ornamental plant and often plays a role in natural hybridization with other sympatric species in Rhododendron subgenus Hymenanthes. Fifteen microsatellite loci were developed and characterized in this species. The average allele number of these microsatellites was four per locus, ranging from three to six. The ranges of expected (HE ) and observed (HO ) heterozygosities were 0.0365 to 0.7091 and 0.0263 to 0.9512, respectively. Cross-species amplification in R. agastum and R. decorum showed that a subset of these markers holds promise for congeneric species study. These sets of markers are potentially useful to investigate the genetic structure and gene flow of R. delavayi and other congeneric species.

Free access