Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Wenjing Guan x
  • HortScience x
Clear All Modify Search

Grafting technology is increasingly being accepted in the United States, particularly for tomato (Solanum lycopersicum) production under protected structures. There is a great potential to expand this technology to other high tunnel crops. Using grafting technology in cucumber (Cucumis sativus) production is widely adopted in Asia to enhance cucumbers’ tolerance to low temperatures. But this technique is rarely used in the United States mainly because of the lack of information on the performance of the grafted plants under local production systems. Figleaf gourd (Cucurbita ficifolia), Cucurbita moschata, and squash interspecific hybrid (Cucurbita maxima × C. moschata) are the most used cucumber rootstocks worldwide. But their comparative performance was largely unknown for cucumber production in high tunnels in the Midwest United States. This study was therefore designed to compare the major types of cucumber rootstocks with the goal of identifying a rootstock with the maximized benefits for high tunnel cucumber production in the area. Nongrafted ‘Socrates’ and ‘Socrates’ grafted with Cucurbita moschata, squash interspecific hybrid, and figleaf gourd rootstocks were evaluated in high tunnels from March to June or July in 2016–19 at the Southwest Purdue Agricultural Center in Vincennes, IN. Transplant establishment, vine growth, and yield in early- and main-crop seasons were investigated. Grafted plants regardless of rootstocks ensured transplant survival even when the soil temperatures were dropped below 10 °C. Suboptimal soil conditions were encountered in the first month after transplanting. Grafted cucumbers with squash interspecific hybrid rootstock significantly increased vine growth from March to April and increased early-season yields (yield before 15 May) by 1.8 to 18.2 times compared with the early-season yields of the nongrafted cucumbers. The benefits provided by using grafting technology dismissed around middle May. Only squash interspecific hybrid rootstock improved cucumber yields in the entire production seasons. Cucumbers grafted with figleaf gourd rootstock had the lowest yield and the least plant growth after mid-May, indicating figleaf gourd rootstock may not be suitable for cucumber production under the current production system. Overall, squash interspecific hybrid was the most promising rootstock for early-season high tunnel cucumber production in the Midwest United States.

Open Access

Grafting with resistant rootstocks is an effective strategy to manage a variety of soilborne diseases and root-knot nematodes in solanaceous and cucurbitaceous vegetables. In addition, improved resistance to some foliar diseases and viruses has also been reported in grafted plants. Hence, grafting technology is considered an important and innovative practice of integrated pest management and a promising alternative for soil fumigants in vegetable production. Inherent resistance within rootstocks and improved plant nutrient uptake are generally suggested as the main reasons for improved disease control in grafted vegetables. However, increasing evidence indicated that systemic defense mechanisms may also play an important role in plant defense as a result of grafting. This review analyzes current literature on the use of grafting techniques for disease management in vegetable crops, discusses potential mechanisms associated with grafting-conferred plant defense, and identifies needs for future research to promote more effective and efficient use of grafting technology to support sustainable vegetable production.

Free access

Interspecific hybrid squash (Cucurbita maxima × Cucurbita moschata) is a well-known cucurbit rootstock for controlling soilborne diseases and improving abiotic stress tolerance. However, reduced fruit quality has been reported on certain melon (Cucumis melo) cultivars when grafted with squash rootstocks. In this study, a field experiment was designed to explore fruit development and quality attributes of galia melon ‘Arava’ by grafting with hybrid squash rootstock ‘Strong Tosa’. Grafted plants with ‘Strong Tosa’ showed delayed anthesis of female flowers by ≈8–9 days, but harvest dates were unaffected compared with non- and self-grafted ‘Arava’ plants. Early and total yields were not significantly different between grafted and nongrafted plants. Grafted plants with ‘Strong Tosa’ rootstock exhibited accelerated fruit development and greater vegetative growth. During the harvest period, ≈27% of grafted plants with ‘Strong Tosa’ wilted, which was determined as nonpathogenic. Grafting with ‘Strong Tosa’ rootstock resulted in reduced fruit total soluble solids (TSS) and consumer rated sensory properties.

Free access

Interest in specialty melons (Cucumis melo) with distinctive fruit characteristics has grown in the United States in recent years. However, disease management remains a major challenge in specialty melon production. In this study, grafting experiments were conducted to determine the effectiveness of using Cucumis metulifer, a species known for its genetic resistance to root-knot nematodes (RKNs; Meloidogyne spp.), as a potential rootstock for managing RKNs in susceptible specialty melon cultivars. In the greenhouse experiment, honeydew melon ‘Honey Yellow’ was grafted onto C. metulifer and inoculated with M. incognita race 1. The grafted plants exhibited significantly lower gall and egg mass indices and fewer eggs compared with non- and self-grafted ‘Honey Yellow’. Cucumis metulifer was further tested as a rootstock in conventional and organic field trials using honeydew melon ‘Honey Yellow’ and galia melon ‘Arava’ as scions. ‘Honey Yellow’ and ‘Arava’ grafted onto C. metulifer exhibited significantly lower galling and reduced RKN population densities in the organic field; however, total and marketable fruit yields were not significantly different from non- and self-grafted plants. Although the improvement of RKN resistance did not translate into yield enhancements, incorporating grafted specialty melons with C. metulifer rootstock into double-cropping systems with RKN-susceptible vegetables may benefit the overall crop production by reducing RKN population densities in the soil. At the conventional field site, which was not infested with RKNs, ‘Honey Yellow’ grafted onto C. metulifer rootstock had a significantly lower total fruit yield than non-grafted ‘Honey Yellow’ plants; however, fruit yields were similar for ‘Arava’ grafted onto C. metulifer rootstock and non-grafted ‘Arava’ plants. Although no significant impacts on the fruit quality attributes of ‘Honey Yellow’ were observed, grafting onto C. metulifer decreased the flesh firmness of ‘Arava’ in both field trials and resulted in a reduction in total soluble solids content under conventional production. In summary, grafting RKN-susceptible melons onto C. metulifer rootstock offers promise for growing these specialty melons; however, more studies are needed to elucidate the scion–rootstock interaction effect on fruit yield and quality.

Free access