Search Results
Selenium (Se) fertilizer has a good effect on many field crops, but there are few reports on the application of Se fertilizer on citrus. We investigated the effects of 0 mg/L (CK, water treatment), 50 mg/L, 100 mg/L, 150 mg/L, and 200 mg/L sodium selenite aqueous solutions on the growth, nutrition, and fruit quality of 15-year-old citrus unshiu (Citrus reticulata Blanco cv. Succosa). The results showed that a low concentration of Se fertilizer promoted the growth and development of the citrus plan, and a high concentration of Se fertilizer was found to slightly inhibit the growth and development of the plant. Among the different treatment groups, 150 mg/L selenium fertilizer showed have the best effect on these evaluated parameters. The results thus suggest that 150 mg/L of Se fertilizer promotes the formation of chlorophyll in the leaves of the test plant and increases the longitudinal and transverse diameter of the fruits and weight of single fruit, significantly enhancing the activity of antioxidant enzymes in the leaves, promoting the absorption of nutrients in the leaves, increasing the contents of total sugar and vitamin, and decreasing the acidity in the fruits and the pericarp thickness. It also promoted the accumulation of the total selenium content in the leaves and fruits and consequently improved the quality of the fruits. These results showed that appropriate concentration of Se treatment can improve the activity of antioxidant enzymes to enhance plant stress resistance, regulate the content of sugar and acid in fruits, and improve the quality of fruits.
The genus Dendrobium is important in traditional Chinese herbal medicine, and the precise identification of Dendrobium species is critical for the treatment and for pharmacological research. In the present study, a ribosomal DNA (rDNA) internal transcribed spacer (ITS) region-based analysis was used to ascertain the phylogenetic relationship among 20 Dendrobium species. The lengths of the ITS regions among the 20 species ranged from 636 to 653 bp, and the identities of the rDNA regions among the different species ranged from 75.7% to 99.1%. The results also showed that the ITS1 and ITS2 regions exhibit more variation than the 5.8S rDNA. A phylogenetic tree derived from the ITS sequence indicated that six medicinal Dendrobium species, of which five are common medicinal plants in the Taiwan market, were closely related and shared a common clade. Multiplex polymerase chain reaction (PCR) amplification was successfully performed to identify the six medicinal Dendrobium species, and amplification refractory mutation system (ARMS) PCR was used to distinguish D. tosaense specifically from the 19 other Dendrobium species. The established PCR-based (multiplex and ARMS) analyses can be used for the authentication of the raw materials of medicinal Dendrobium from other species.