Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Weiming Guo x
- HortScience x
Effects of two pretreatments, i.e., ultrasonic wave (UW) and ultrasonic wave plus preservative solution (UW+PS), on water conditions of flower stem and membrane stability of petals in Nymphaea tetragona during 6-d cold wet storage. Compared with no pretreatment control, the two pretreatments prolonged the vase life and improved water conditions of the cut flower during cold storage to different degrees. Fresh weight of flower stems and relative water content of petals increased during cold storage. The water utilization efficiency of flower stem and water potential in different parts of flower stem were improved significantly as a result of the pretreatments. Although both pretreatments helped the cut flowers maintain favorable water relations, the effects of UW + PS combined pretreatment were better than UW pretreatment alone. In addition, UW and UW+PS inhibited the increase in the contents of lipid peroxidation product malondialdehyde (MDA) and superoxide anion in petals. UW + PS promoted superoxide dismutase (SOD) and catalase (CAT) activities in petals during cold storage to a greater degree than did UW.
The autointoxication of chrysanthemum was studied using water extract of Dendranthema morifolium's rhizospheric soil. Results of bioassays showed that the water extract inhibited chrysanthemum seed germination and the activities of some important root enzymes. The seedling nitrate reductase activity was decreased linearly with increasing concentration of the extract. The activity of root dehydrogenase was inhibited only at the highest concentration tested [3.2 g·mL-1, dry weight (DW)], but was stimulated at a lower concentration tested (1.6 g·mL-1, DW). Malondialdehyde content increased at higher than 1.6 g·mL-1, DW concentrations of the extract. The autointoxication phenomenon might be related to the difficulties in continuous plantings of chrysanthemum at the same location.
Mei (Prunus mume Sieb. et Zucc.) flower is one of the candidates for the national flower of the People's Republic of China. Several major anthocyanins from the flowers of P. mume Sieb. et Zucc. were isolated with MeOH-HOAc-water (10:1:9, v/v), and purified by paper chromatography and subsequent column chromatography. Specific chemical reactions, chromatographic and spectroscopic analyses indicated that the anthocyanins in `Nanjing Hongxu' (Nanjing red-bearded) were cyanidin 3-O-(6'-O-α-rhamnopyranosyl-β-glucopyranoside) and cyanidin 3-O-(6'-O-galloyl-3'-O-β-glucopyranosyl-β-glucopyranoside). Anthocyanins in `Nanjing Hong' (Nanjing red) were cyanidin 3-O-(6'-O-α-rhamnopyranosyl-β-glucopyranoside), cyanidin 3-O-(6'-O-galloyl-β-glucopyranoside) and cyanidin 3-O-(6'-O-E-feruloyl-βglucopyranoside). In addition to contributing to the blue flower color, the anthocyanins may improve the ability of the two cultivars to survive at low temperatures.