Search Results
You are looking at 1 - 8 of 8 items for :
- Author or Editor: W.E. Jones x
- HortScience x
Flow cytometry (FC) has proven to be an efficient and reliable method to estimate nuclear DNA content (genome size) in quantifiable units useful for genetic and molecular biology studies. This method also makes possible determination of the variation in nuclear DNA content between related taxa, which gives insights into the process of speciation. In this study, DNA content was determined in nuclei isolated from leaves of 21 Dendrobium species representing each of the major taxonomic groups used in the Univ. of Hawaii breeding program. Nuclei were mechanically isolated, stained with the nucleic acid-specific fluorochrom propidium iodide, and DNA content determined using a Coulter Epics 753 laser flow cytometer. Chicken erythrocyte nuclei (2C = 2.33 pg DNA) were used as an internal standard for direct comparative measurement. The mean diploid genome (2C) values for Dendrobium species ranged from 3.36 to 5.06 pg. Genome sizes were evaluated for possible use as discrete characters for taxonomic group assignment and compared to previous data on breeding compatibility and evolutionary relationship between species.
An efficient deoxyribonucleic acid (DNA) extraction procedure that yields large quantities of DNA would provide adequate DNA for a large number of different analytical procedures. This study was conducted to compare three DNA extraction procedures for cost, time efficiency, and DNA content while extracting DNA from Kentucky bluegrass (Poa pratensis L.). Three students at the Univ. of Illinois with varying levels of DNA extraction experience conducted DNA extractions using Plant DNeasy™ Mini Kits, Plant DNAzol® Reagent, and a PEX/CTAB buffer. Costs varied significantly with cost (US$) per DNA sample of $3.04 for the DNeasy™ method, $0.99 for the DNAzol® method, and $0.39 for the PEX/CTAB extraction. The DNAzol® method was the fastest; although extracting 2.8 ng less DNA than the DNeasy™ method, it did not require the use of hazardous organic solvents, and random amplified polymorphic DNA (RAPD) markers were satisfactory for DNA fingerprinting of Kentucky bluegrass cultivars. The PEX/CTAB method, which did not include a tissue homogenization step, did not have reproducible banding patterns due to miniscule and inconsistent quantities of DNA extracted, or possibly due to inadequate purification. The investigator with the least DNA extraction experience was the slowest, while extracting 75% more DNA. All three methods are easily adapted to laboratories having personnel with different levels of experience. The DNAzol® Reagent method should save time and money, with reproducible results when many individual plant samples need to be identified. Chemical names used: potassium ethyl xanthogenate (PEX); cetyltrimethyl ammonium bromide (CTAB)
Tomato (Lycopersicon esculentum Mill.) accessions were tested for hypersensitivity and rated for resistance following field inoculation with tomato race 3 (T3) of the bacterial spot pathogen Xanthomonas campestris pv. vesicatoria (Doidge) Dye (Xcv) in 1992 and 1993. Hawaii 7981, PI 126932, PI 128216, and selections of the latter two expressed hypersensitivity. Hawaii 7981, only tested in the field in 1993, was nearly symptomless and developed significantly less disease than any other accession. PI 128216 had a level of disease similar to susceptible `Solar Set' when tested in 1993. However, a selection from it (PI 126218-S) was significantly more resistant than `Solar Set' in both years. Although PI 126932 had a level of disease similar to `Solar Set' in both years, a selection from it (PI 126932-1-2) was significantly more resistant than `Solar Set' in 1993. Other accessions without hypersensitive responses but more resistant than `Solar Set' for two seasons were PI 114490, PI 126428, PI 340905-S, and PI 155372. Hawaii 7975 was significantly more resistant than `Solar Set' in the one season it was tested.
Onion pungency is a major quality attribute with many consumers demanding less pungent onions. In recent years, some growers and retailers have attempted to measure pungency of onions produced in different regions to guarantee a desired level of pungency. However, there are few data on the variability among laboratories using standardized protocols to estimate relative levels of pungencies. Onion cultivars were grown in replicated trials at three locations. Random samples of bulbs from each experimental unit were harvested and shipped to at least three cooperating laboratories, each of which measured soluble solids content (SSC) and pungencies using the same techniques. As expected, cultivars and environments showed significant (P < 0.001) differences. For all three trials, laboratories were a highly significant source of variation (P < 0.024 to 0.001) for measurements of SSC and pungency. Therefore, one cannot make recommendations on relative pungencies of the same lots of onions measured by different labs. The onion research community must identify specific procedures to reduce variation among laboratories to develop a more repeatable standardized assay for the measurement of onion pungency.
Thirty-two tomato (Lycopersicon esculentum Mill.) or L. pimpinellifolium (L.) Mill. accessions were inoculated with race T2 of Xanthomonas campestris pv. vesicatoria (Xcv) in a field experiment at Wooster, Ohio, in 1995. Plants from accessions which segregated for race T2 resistance in greenhouse tests were selected and these are designated by hyphenated extensions below. The eight most resistant accessions from 1995 and PI 262173 were retested in 1996. Lycopersicon esculentum accession PI 114490-1-1 had virtually no Xcv symptoms either year. Lycopersicon pimpinellifolium accessions LA 442-1-Bk and PI 128216-T2 expressed a high level of resistance in 1995, but only partial resistance in 1996. Accessions with partial resistance for both seasons were PI 79532-S1, PI 155372-S1, PI 126428, PI 271385, PI 195002, PI 262173, Hawaii 7998, and Hawaii 7983. PI 79532-S1 is a L. pimpinellifolium accession and the remaining seven are L. esculentum. Twenty accessions tested in 1995 for T2 plus 10 other accessions were also tested for race T1 resistance in Presidente Prudente, Sao Paulo, Brazil, in 1993. Hawaii 7983, PI 155372-S1, PI 114490, PI 114490-S1, and PI 262173 had greater resistance to T1 than the susceptible control, `Solar Set'. Comparisons with earlier experiments, in which accessions were inoculated with race T1 or T3, indicated that the most consistent source of resistance to all three races was PI 114490 or selections derived from it.
Thirty-three tomato (Lycopersicon esculentum Mill.) or L. pimpinellifolium (L.) Mill. accessions were inoculated with race T2 of Xanthomonas campestris pv. vesicatoria (Xcv) in a field experiment at Wooster, Ohio, in Summer 1995. These included accessions selected for race T2 resistance in greenhouse tests in Florida, and accessions from Hawaii, Brazil, and Bulgaria. One L. esculentum (PI 114490-1-1) and three L. pimpinellifolium (PI 340905-S1, PI 128216-T2, and LA 442-1-BK) accessions had no Xcv symptoms. This is the first report of resistance to Xcv race T2. Partial resistance was found in PI 271385, PI 79532-S1, PI 155372-S1, PI 195002, and PI 126428. Most of the 33 genotypes were tested for race T1 resistance in Presidente Prudente, Sao Paulo, Brazil in summer 1993. Hawaii 7983, PI 155372-S1, PI 114490, PI 114490-S1, and PI 262173 had greater resistance to T1 than the susceptible control `Solar Set'. Comparisons with earlier experiments in which accessions were inoculated with race T1 or T3 indicated that the most consistent source of resistance to all three races was PI 114490 or selections from it.
Three systems of peach production have been established (Flore, et al., 1991, HortScience 26(6):747) utilizing three levels of chemical input: conventional input, moderate level, and low level. The moderate and low levels of chemical input use increasing degrees of IPM. In 1992, data were collected on yield, insect and disease impact on fruit quality, vegetative growth, nitrate and simazine levels in the soil, and insecticide residues in the fruit. The yield per tree was substantially higher in the conventional treatment but this effect could be attributed to an early spring frost, local topography, or the treatment system. The percentage of fruit free from insect and disease damage was highest in the conventional treatment (95.1%), but the low input had a relatively high percentage of fruit free of damage (79.6%). Shoot cold hardiness of one year old shoots was not affected by treatment. Bud survival after a spring frost was greater in the conventional orchards, but topography may have influenced this parameter. Nitrate levels 2 m in the soil and sim-azine residues in the A horizon were not affected by treatment. Lorsban®, Guthion®, and Asana® residues in fruit are currently being analyzed and will be discussed. Additional data collected in 1993 and future years will contribute more information on the use of the low and moderate chemical input treatments on peach production.
Abstract
Spraying with 3% ethyl oleate (EO) reduced the incidence of cracking from 29 to 11% in ‘Vista’ cherries (Prunis avium L.) Applications of EO increased the rate of dehydration in cherries exposed to ambient air following treatment. Scanning electron microscopy (SEM) observations suggest that EO modifies the cherry cuticle by redistributing surface wax, thereby enhancing mass transfer of water vapor through the skin.