Search Results
The ability to remove the pistillate flowers and young nuts from precocious lateral-bearing English walnut (Juglans regia L.) cultivars during the first several years following planting would be useful both in reducing competition with vegetative growth and eliminating potential infection sites for blackline disease (cherry leafroll virus). Applications of ethephon shortly after full bloom were shown to effectively remove all or most pistillate flowers depending upon spray timing and ethephon concentration. Moderate phytotoxicity and reduced seasonal growth limit the usefulness of this technique in the field. Removal of staminate flowers (catkins) prior to pollen release may reduce the excessive pistillate flower abscission of the `Serr' cultivar. Applications of ethephon shortly before the onset of pollen shedding were shown to be ineffective in catkin removal.
Walnut husk fly (Rhagoletis completa) is a major pest of English walnuts in California. Research was initiated in 1995 to evaluate reduced-risk pesticides. The first effective control measures were found in 2001—spinosad plus bait and kaolin (Surround). Spinosad was registered for organic use in 2003 as GF-120 NF (a formulation of spinosad and bait) and Entrust (a spinosad formulation to be mixed with existing baits). GF-120 is recommended for low to moderate populations while Entrust + bait is recommended for higher populations. Entrust + bait is price competitive with the standard malathion + bait. Kaolin is also effective for walnut husk fly control; however, control is dependent upon adequate coverage. In 2004, varietal susceptibility was assessed. The cultivars `Payne', `Serr', `Pedro', and `Hartley' were found to be highly susceptible while `Chandler' and `Howard' were somewhat resistant. Infestation in `Chandler' began later in the season than in other cultivars. Quality parameters were also measured. Samples of 100 infested and uninfested `Tulare' walnuts were compared at harvest. There were significant differences in adhering hull, percentage of edible yield, and relative value between infested and uninfested nuts. The relative value of infested nuts was 28% less than uninfested nuts. There were minimal differences in percentage of mold and kernel color. Walnuts sprayed with kaolin had larger nuts, fewer external defects, and an earlier harvest timing.
Abstract
Wine grape (Vitis vinifera L.) vineyards in much of the desert Southwest are frequently exposed to intense solar radiation, high vapor pressure deficits, and high air temperatures. Although wine grape production in this region has increased during recent years, the harsh environment often results in growth conditions that may be suboptimal for photosynthesis and other plant processes, ultimately affecting fruit yield, wine color, and acidity.
Moderate California winters often result in delayed, erratic or extended bloom, inadequate overlap with pollenizers, poor leafing-out, low fruit set, and irregular fruit maturity. In recent years, use of rest-breaking agents has become commonplace in California sweet cherry (Prunus avium L.) culture, mainly to promote earlier bloom and fruit maturity, but also to promote uniform flowering and overcome lack of marginal chilling. Variable responses by different cultivars and in different seasons may be due to different chilling requirements, despite little variation in genetic background for chill requirement in California's commercial cultivars. Other sources of variation include the activity of the rest-breaking agent used, concentration and carrier volume. A minimum amount of effective chill appears to be required for a given cultivar before rest-breaking agents can be effectively applied. This threshold, as exhibited by degree of response to treatment, can be an important indicator of when to spray. Method of measuring chill accumulation, and thus, timing of applications, varies by region and historic acceptance. California's tree fruit industry typically uses the 45 °F “chill hour” model. The Utah Chill Unit Model and the Modified 45 °F Chill Hours Model had not been thoroughly tested under California conditions nor with the rest-breaking chemicals that are in use today in California. We tested our research results against these models and the Dynamic Model developed in Israel and concluded that the Dynamic Model provided the best explanation of responses in our experimental trials. We have been developing recommendations for application of rest-breaking chemicals based on Dynamic Model chill portion accumulation.
The years 1995 and 1996 were low chill years in California with respect to stone fruit dormancy. Advancing reproductive budbreak and flowering was accomplished in `Bing' cherry (Prunus avium) by single-spray treatments of a surfactant {a polymeric alkoxylated fatty amine [N,N-bis 2-(omega-hydroxypolyoxyethylene/polyoxypropylene) ethyl alkylamine]} and potassium nitrate in combination when applied at “tightbud,” ≈ 42 days (1 Feb. 1995) before full bloom and with surfactant and potassium nitrate in combination when 10% green calyx was apparent, 33 days before full bloom. Applying 2% surfactant (v/v) + 6% potassium nitrate (w/v) was most effective in advancing bloom, speeding progression through bloom, and advancing fruit maturity when applied at tightbud stage. Surfactant (2% or 4%) applied with 25% or 35% calcium nitrate (w/v) on 2 Feb. 1996 significantly advanced full bloom compared to nontreated controls. Fruit maturity (1995) was somewhat advanced by surfactant–nitrate treatments, but fruit set and final fruit weight were equivalent among treatments. No phytotoxicity was noted in foliage or fruit. In California, marginal and insufficient winter chilling often causes irregular, extended, or delayed bloom periods, resulting in poor bloom-overlap with pollenizers. As a result, flower and fruit development may be so variable as to have small, green and ripe fruit on the same tree, making harvest more time consuming and costly. Data indicate that this surfactant, in combination with a nitrogenous compound, has potential to advance reproductive budbreak and advance maturity in sweet cherry without reducing fruit set or fruit size. Advancing the ripening time of sweet cherry even 2 to 3 days can increase the price received per 8.2-kg box by $10 to $20.
In continuing trials (1995-current), we have used a variety of treatments to overcome inadequate chilling, coordinate bloom, improve leaf out and cropping, and advance/coordinate maturity in sweet cherry, cv. Bing. Treatments have included hydrogen cyanamide (HCN, Dormex) and various surfactants or dormant oils combined with calcium ammonium nitrate (CAN17). Chill hour accumulation, (required chilling for `Bing' = 850 to 880 chill hours) has varied greatly in each dormant season from 392 (Hollister, 1995-1996) to adequate, depending both on the season and location (central valley vs. coastal valley). In 1998, 4% HCN advanced budbreak significantly compared to any other treatment, although other chemical treatments also were more advanced than the untreated control. Dormex advanced completion of bloom 11% to 40% more than other treatments, although other dormancy-replacing chemicals were at least 16% more advanced in petal fall than the untreated control. Dormex contributed to slightly elevated truss bud death, as did 2% Armobreak + 25% CAN17. In 1998, fruit set was improved by 2% Armobreak + 25% CAN17 (79%) compared to the untreated control (50%); all other treatments statistically equaled the control. Fruit set was not improved by Dormex, although bloom was advanced by a few days in this treatment. As fruit set was increased by treatments, rowsize decreased (as did fruit weight), as expected, but no treatment resulted in unacceptable size. In 1997, fruit set was also improved by 2% Armobreak + 25% CAN17; however, fruit set was so low overall in that year that no real impact was found. In 1997 and 1998, 4% HCN advanced fruit maturity compared to other treatments, with darker, softer, larger fruit at commercial harvest. These and additional results will be presented.
Preliminary studies with controlled pollinations have shown that pistillate flower abscission (PFA) in walnut (Juglands spp.) is associated with heavy pollen loads on the flowers. This study measured percent pistillate flower abscission (PFA), pollen grains per flower, yield and yield efficiency on Serr walnut from trees adjoining pollinizing cvs and at sequential intervals up to 197m away in twelve orchard locations. A highly significant, negative correlation in PFA existed as distance from the foreign pollen source increased. Pollen grains per flower were highly correlated with percentage PFA. Yield and yield efficiency, measured in two of the test orchards, were positively correlated with distance from the pollen source.