Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Uttara C. Samarakoon x
  • HortTechnology x
Clear All Modify Search

Vegetatively propagated unrooted cuttings typically are grown in equatorial locations and shipped via airfreight to propagators located in temperate climates. Cutting quality, defined as the resistance to external forces, such as physical damage and pathogen infection, impacts postharvest durability during shipping and propagation. During our previous studies, foliar application of calcium (Ca) in the form of Ca chloride was effective at increasing leaf mechanical strength of poinsettia (Euphorbia pulcherrima) and zonal geranium (Pelargonium ×hortorum). Calcium chloride applied at ≥800 mg·L−1 Ca caused phytotoxicity symptoms in poinsettia; therefore, in the current work, we investigated the use of chelated Ca by providing Ca at 40, 80, or 160 mg·L−1 and salicylic acid (SA) at 150 or 300 mg·L−1 to increase the mechanical strength of poinsettia leaves. Mechanical strength of leaves was assessed using a force-displacement graph generated from a texture analyzer using a ball probe to penetrate a unit area of a clamped leaf. The peak force to fracture the leaf and work-of-penetration, defined as the area under the force-displacement curve, were used as indicators of mechanical strength. Calcium concentration in the leaves increased by 27% with increased application of Ca from 0 to 160 mg·L−1. Peak force was 26% greater in treatments with Ca at 80 or 160 mg·L−1 compared with the untreated control. Work-of-penetration was 24% and 29% greater for treatments with Ca at 80 and 160 mg·L−1, respectively, compared with the control. Foliar application of SA did not affect leaf mechanical strength. Chelated Ca applied at 160 mg·L−1 Ca caused visual phytotoxicity symptoms; thus, applications of 80 mg·L−1 Ca are recommended to improve resistance to physical damage for poinsettia leaves.

Open Access

Clematis (Clematis ×hybrida) has not traditionally fit into the standard production system for vegetatively propagated herbaceous perennials because of the lack of commercially available unrooted cuttings and relatively poor rooting success. We investigated strategies to improve stock plant production and propagation of clematis. The first experiment compared the propagation performance of four cultivars (H.F. Young, Reiman, Little Duckling, and Pinky). The second experiment examined cutting productivity and propagation performance of clematis cultivars when stock plants were grown at 21 or 27 °C and propagated with or without the application of rooting hormone. Stock plants grown at 27 °C resulted in greater cutting numbers and greater dry weights in the rooted cuttings after propagation. The third experiment demonstrated the effects of the origin of the cuttings of the stock plant on cutting productivity and propagation performance. When shoots emerged from underground buds, as compared with axillary buds, the numbers of cuttings and fresh and dry weights of the rooted cuttings were increased by nearly 50%. The promotion of shoot emergence from underground buds on the stock plants led to continuous cutting production for five cycles, with cutting number increasing from 67 to 128 cuttings/plant. Year-round cutting supplies can be achieved by trimming stock plants to the substrate surface to promote juvenile shoot development while maintaining stock plants under long-day photoperiods and warm temperatures (27 °C).

Open Access

During the production of ornamentals in commercial greenhouses, hanging baskets are often grown above the bench or floor space to maximize production. These hanging baskets impact the light environment delivered to the crop underneath. An experiment was conducted to quantify the effect of hanging basket density (determined by number of lines of containers per greenhouse bay and container spacing per line), container content (with plants vs. no plants), and container color (white vs. green) on photosynthetic photon flux (PPF) transmission and red (R) and far-red (FR) light measurements at the greenhouse floor under the hanging basket treatments. Interception of PPF was calculated as a proportion of the treatment with no hanging baskets. Interception of PPF increased as hanging basket density increased, from 5.3% interception at 0.21 containers/yard2 to 25.5% interception at 2.57 containers/yard2. Green containers intercepted 36.1% more radiation than the white containers. Presence of plants in the containers resulted in 62.3% greater PPF interception than containers without plants. R:FR was reduced from 1.15 measured under hanging basket treatments without plants to 1.07 under hanging basket treatments containing plants.

Full access

The time to harvest maturity of flowering shoots and the extent and source of variability in maturity dates differed among cultivars of gentian (Gentiana sp.), with a wider spread in time to harvest maturity in Showtime Starlet (41 days) than Showtime Diva (35 days) and Showtime Spotlight (29 days). Cultivars also differed by more than twice in their plant-to-plant variability in time to harvest. Although later-emerging shoots reached harvest maturity more quickly than earlier-emerging shoots, the use of growing degree-days (GDD) for this field-grown cut flower did not account for differences. For ‘Showtime Diva’, 77% of outliers reached harvest maturity at the beginning of the season (i.e., before the 10th percentile). For ‘Showtime Spotlight’, only 20% of shoots classified as outliers flowered early with the remaining 80% emerging late (i.e., after the 90th percentile). Strategies to control the spread in time to harvest maturity in late-maturing cultivars such as Showtime Starlet should focus on uniform shoot emergence and controlling temperature during growth. Although strategies to achieve uniform shoot emergence should also be targeted for ‘Showtime Diva’, controlling temperature during the growing season would not appear to offer significant control of the spread in time of harvesting floral shoots. However, in earlier-maturing cultivars such as Showtime Spotlight, strategies will primarily require a greater understanding of the factors influencing the variability in maturation of shoots within individual plants before, and after, emergence.

Full access