Search Results
You are looking at 1 - 10 of 19 items for :
- Author or Editor: Ute Albrecht x
- HortScience x
Health and quality of the root system are imperative to ensure the successful establishment of a citrus tree after transplant from the nursery into the field. Containerized citrus production in enclosed nurseries restricts root growth and can result in root circling and intertwining. This may hinder root expansion and result in root girdling after transplant, negatively affecting tree establishment and growth. The root structure of a transplanted citrus tree can also be affected by the container type used in the nursery. Containers with root-pruning properties like chemical pruning or air pruning reduce root circling and may produce superior root systems compared with regular, nonpruning containers. The aim of this study was to evaluate the effects of different nursery containers on root physiological and morphological traits and plant performance over 15 months of growth in the nursery. Three container types, chemical pruning containers, air-pruning containers, and standard nursery containers, were compared. The chemical pruning containers were standard citrus nursery containers with a mixture of copy hydroxide [Cu(OH)2] and copper carbonate (CuCO3) [10% copper (Cu)] applied to the inner wall. Pruning occurs upon contact of the roots with the Cu on the wall of the containers. The air-pruning containers were custom-sized Air-Pots in which pruning occurs on holes in the wall of the containers upon contact of the roots with the air. Two rootstocks, US-812 and US-942 (Citrus reticulata × Poncirus trifoliata), were included for comparison in the nongrafted stage and 12 months after grafting with ‘Valencia’ orange (Citrus sinensis). Chemical root pruning positively influenced tree height, shoot mass, leaf area, rootstock trunk diameter, and the nonfibrous root biomass. No differences among container types were observed for the fibrous root biomass, but chemical pruning produced more roots that were finer with a higher specific root length and a higher respiration rate. In contrast, air pruning produced more roots that were thicker compared with the other containers. Most of the leaf nutrients were lower in trees grown in the chemical pruning containers compared with the standard containers, except for Cu and zinc (Zn), which were highest in the former. Trees growing in air-pruning containers were not significantly different in growth from trees growing in standard containers.
The bacterial pathogen associated with citrus huanglongbing (HLB) resides in the phloem of affected trees. The widespread abundance of the vector in Florida, the Asian citrus psyllid (Diaphorina citri), and the location of the pathogen in the tree vascular tissue limits the efficacy of foliar-applied therapies. Trunk injection is a crop protection strategy that applies therapeutic compounds directly into the tree vascular system, enabling their systemic distribution within the tree. However, limited information is available on the most effective methodology for implementing trunk injection at the commercial scale and the extent of damage inflicted by the injection. In this study, 5-year-old HLB-affected ‘Midsweet’ sweet orange (Citrus sinensis) trees were injected with the insecticide imidacloprid, the antibacterial oxytetracycline, or water. Injections occurred in Jun and Oct 2020 using three trunk injection techniques. Trees were monitored for external wounding and internal damage associated with injection, as well as tree health, bacterial titers, and yield for two production seasons. Low-pressure injection caused the least damage; however, it was less effective at delivering the tested compounds than medium- or high-pressure injection. Despite causing the greatest extent of external and internal damage at the injection site, injection of oxytetracycline significantly improved tree health, reduced bacterial titers, and increased yield in the two seasons of this study. Imidacloprid injection caused less wound damage but did not result in any lasting benefits to the trees. These results suggest that trunk injection of oxytetracycline could be an effective strategy for managing HLB and that the damage inflicted by this crop protection strategy can be reduced by selecting a suitable injection technique.
Cilantro (Coriandrum sativum L.), also called coriander, is an herbaceous, annual plant that is cultivated worldwide for its leaves and seeds. Cilantro has a strong propensity to bolt quickly in hot weather and under long-day (LD) conditions, which affects the flavor and renders the crop unmarketable. High incidence of preharvest bolting in open-field production can cause significant economic loss. The phytohormone gibberellic acid (GA) regulates stem elongation and floral initiation in many LD rosette plants. In pilot experiments, we found that GA induced bolting in greenhouse-grown cilantro and that plant growth regulators (PGRs) with anti-GA activity can delay this process. We then explored the effects of different GA inhibitors on reducing the incidence of bolting in cilantro grown in a commercial open-field environment. Four field trials were conducted on a commercial farm near Clewiston in Florida between Fall 2016 and Spring 2018. Different growth regulators were applied at different times, ranging from 5 to 8 weeks after seeding (WAS), and plants were harvested 2 to 3 weeks thereafter. Applications of GA inhibitors significantly reduced the incidence of bolting in three of the four trials, but the extent depended on the type of inhibitor used. The results from one trial were inconclusive due to changes in weather that prevented bolting in the entire field. Overall, plots treated with prohexadione calcium and paclobutrazol were most effective and reduced bolting by up to 78%. Applying the PGRs at 5 and 6 WAS was more effective than at 7 or 8 WAS.
Fresh-cut sweet basil (Ocimum basilicum L.) is highly sensitive to low temperatures during postharvest storage. This study investigates whether preharvest foliar application of different concentrations of abscisic acid (ABA) can increase tolerance of the commercial basil varieties ‘Di Genova’ and ‘Nufar’ to chilling injury (CI) during postharvest storage at 3.5 °C and at 7 °C. Experiments were conducted under greenhouse and commercial open-field conditions in southwest Florida during the 2017/2018 growing season. Our results showed that greenhouse-grown plants were less affected by CI during 9 days of storage at 3.5 °C when treated with 1000 mg/L or 1500 mg/L ABA and at 7 °C storage compared with the water control, but effects varied by experiment. Preharvest applications of 1000 mg/L ABA were sufficient in reducing CI during cold storage at 3.5 °C in basil grown under open-field conditions; however, at 7 °C postharvest storage, chilling-induced damage did not differ between ABA and untreated plants. Electrolyte leakage analysis of leaves confirmed the beneficial effects of ABA on alleviating chilling-induced injury. Under greenhouse conditions, preharvest applications of 1000 mg/L ABA were more effective when plants were harvested at 1300 or 1530 hr than at 1100 hr. Our results suggest that 1000 mg/L foliar preharvest applications of ABA in combination with afternoon harvest are an effective strategy to alleviate CI damage during postharvest storage at temperatures less than 4 °C and to extend the shelf life of greenhouse or field-grown, fresh-cut basil.
Huanglongbing (HLB) is a devastating disease of citrus and threatens the citrus industry worldwide. The suspected causal agent of the disease is a phloem-limited bacterium of the genus Candidatus Liberibacter transmitted through insect vector or grafting with diseased budwood. Currently, most seed source trees for citrus rootstock propagation are located outdoors and unprotected from disease transmission. In addition, fruit from HLB-affected scion varieties in Florida containing seeds enter the commercial trade and move into other citrus-growing areas. The objective of this study was to determine how Ca. L. asiaticus infection affects seed quality and seedling development and whether the disease appears in seedlings grown from infected fruit. Two experiments were conducted involving thousands of seedlings produced from seeds from infected rootstock seed source trees and ‘Valencia’ sweet orange trees, respectively. Infection of trees and fruit with Ca. L. asiaticus significantly reduced seed weight, seed germination, and seedling height. Seedlings did not develop symptoms typical of HLB throughout the experiment. Polymerase chain reaction (PCR) analysis initially identified two of 686 rootstock seedlings and three of 431 sweet orange seedlings positive for the pathogen when they were very young. Resampling and PCR analysis of these five seedlings at older ages consistently indicated they were negative for the pathogen and none of these plants ever developed symptoms of HLB. It is suggested that Ca. L. asiaticus may have been translocated into some part of the embryo during seed development but that it was not present in cells or tissue, which permitted replication or disease development as the seedling grew.
Huanglongbing (HLB) is a destructive disease of citrus in most citrus-producing countries worldwide. The disease, presumably caused by phloem-limited bacteria of the genus Candidatus Liberibacter, affects all known citrus species and citrus relatives with little known resistance. Typical disease symptoms are the production of abnormal-looking fruit and chlorosis or blotchy mottle of the leaves followed at advanced stages by tree decline and death. Trifoliate orange (P. trifoliata L. Raf.) and some of its hybrids reportedly lack distinct disease symptoms despite infection with the pathogen. US-897 is a hybrid of trifoliate orange and ‘Cleopatra’ mandarin (C. reticulata Blanco), the latter being highly susceptible to HLB. This study investigated whether field-grown, naturally infected trees and greenhouse-grown, graft-inoculated seedlings of this genotype display tolerance or resistance to HLB. It was shown that naturally infected US-897 trees exhibited no distinct disease symptoms commonly associated with HLB, except for the occurrence of few mottled leaves in a small percentage of trees. Analysis of fruit and seed from infected trees did not detect any growth reduction or otherwise negative impact on development. Graft-inoculated US-897 seedlings became polymerase chain reaction (PCR)-positive for the pathogen but exhibited a superior performance compared with ‘Cleopatra’ mandarin seedlings, which displayed severe disease symptoms soon after inoculation. Despite infection, most US-897 seedlings did not develop leaf symptoms typical for HLB. Foliar symptoms observed in a small number of plants at later stages of the disease were faint and difficult to discern. Contrary to ‘Cleopatra’ seedlings, growth in stem diameter was only moderately reduced or unaffected in infected US-897 seedlings. The superior performance of US-897 plants in greenhouse and field locations suggest tolerance of this genotype to Ca. L. asiaticus.
Modern citrus nursery production makes use of potted-tree propagation in greenhouses. Supplemental lighting is one method by which nursery tree growth and profitability may be significantly improved, but limited specific information is available. Five replicated experiments were conducted to determine the utility and effects of increasing daylength during the winter months by supplemental illumination from light-emitting diode (LED) or high-pressure sodium (HPS) lights in citrus nursery propagation. Studies used ‘Valencia’ sweet orange scion, the most common citrus cultivar grown in Florida, and the commercially important rootstocks sour orange, ‘Cleopatra’ mandarin, ‘US-812’, ‘US-897’, ‘US-942’, and ‘US-1516’. Comparisons used the three common types of citrus rootstock propagation: seed, stem cuttings, and micropropagation. Six responses were measured in the lighting experiments, including vegetative growth before budding, scion bud survival, and scion bud growth after budding. Supplemental HPS or LED light to extend daylength to 16 h in the citrus nursery during short-day winter months was observed to be effective in increasing unbudded rootstock liner growth and ‘Valencia’ scion growth on all rootstocks and propagation types. Generally, the positive effect on vegetative growth from an increased daylength was stronger with the HPS light than with LED light, while increasing daylength with LED light, but not HPS light, provided some increased bud growth initiation. Use of HPS or LED supplemental lighting to extend daylength offers significant growth advantage for the citrus nursery industry in winter.
Huanglongbing (HLB), an important citrus disease, causes many physiological and anatomical changes such as phloem dysfunction, imbalance in carbohydrate partitioning, decrease in leaf chlorophyll, and nutritional imbalances in the affected trees, ultimately resulting in tree decline. In Florida, HLB is associated with phloem-limited bacteria Candidatus Liberibacter asiaticus (CLas), and it is vectored by the Asian citrus psyllid (Diaphorina citri). No cure for HLB has been found, and most of the HLB management efforts have been focused on vector control or exclusion, improved nutrient management, and the use of HLB-tolerant rootstocks. Individual protective covers (IPCs) are a type of psyllid exclusion tool that is increasingly used by growers for HLB management of newly planted citrus trees. However, no studies have evaluated their influence on citrus tree physiology. This study investigated the effect of IPCs and different rates of insecticides on CLas infection and different physiological attributes, including soluble (glucose, fructose, and sucrose) and nonsoluble (starch) carbohydrates, leaf chlorophyll, and leaf macronutrients and micronutrients over 2.5 years of field growth. The treatments (tree cover and insecticides rate) were applied in newly planted ‘Valencia’ sweet orange (Citrus sinensis) trees grafted on ‘Cleopatra’ (C. reticulata) rootstock. The IPCs prevented CLas transmission and accumulation of foliar starch, sucrose, and glucose commonly associated with HLB. IPC-covered trees had more leaf chlorophyll-a and chlorophyll-b than noncovered trees and more leaf nitrogen (N) and zinc (Zn). Our findings suggest that IPCs effectively prevent CLas infection and maintain the physiological health of young citrus trees under heavy HLB pressure. Therefore, IPCs are recommended as an important component of integrated pest management for this devastating disease.
There are generally inadequate supplies of seed for the newest rootstocks to satisfy the growing demand for the propagation material to be used in commercial citrus nurseries. Consequently, rootstock propagation, which is traditionally by seed, now often makes use of alternative methods such as cuttings and tissue culture (TC). Propagation through cuttings and TC will generate a root system that is largely composed of adventitious or lateral roots, compared with seed propagation, which will generally promote the formation of a well-defined taproot. In this study, we compared root architecture and growth of seven different rootstock plants, generated from seed, stem cuttings, or TC, during the early weeks of growth in the greenhouse. Based on total dry biomass, root mass fraction of plants generated from cuttings ranged from 11% to 16%, and from 16% to 29% and 21% to 30% for micropropagated plants and seedlings, respectively. Plants propagated through cuttings had the most primary roots (7–10), followed by tissue culture–propagated plants which developed an average of 2–6 primary roots. As expected, plants grown from seeds mostly developed a single and well-defined taproot during the first weeks. The total number of first order lateral roots was highest in the plants propagated as cuttings (108–185) compared with 53–103 and 43–78 for tissue culture–propagated plants and seedlings, respectively. Similarly, specific root length (SRL) was highest in plants derived from cuttings (21–43 m·g−1) and lowest in plants grown from seed (7–20 m·g−1). It is suggested that the larger number and length of roots on rootstock plants propagated through vegetative methods may be better suited for resource acquisition as compared with seed propagated plants.
The rootstock plays a large role in modern citrus production because of its influence on tolerance to adverse abiotic and biotic soil-borne stresses, and on the general horticultural characteristics of the grafted scion. In recent years, rootstock has received increased attention as a management strategy to alleviate the devastating effects of the bacterial disease huanglongbing (HLB), also known as “citrus greening.” In commercial citrus nursery production, rootstocks are typically propagated by seed. Because of the increased demand for HLB-tolerant rootstocks, seed supply is often inadequate for the most popular cultivars. Cuttings and tissue culture (TC) propagation are alternative methods to supply adequate quantities of genetically identical rootstocks to be used as liners for grafting. However, there are concerns among nursery owners and citrus growers regarding the possible inferiority of rootstocks that are not propagated by seed. This study investigates the influence of rootstock propagation method on traits of sweet orange trees grafted on four commercially important rootstock cultivars during the nursery stage and during the first year of growth in a commercial citrus orchard. Several of the measured traits during the nursery stage, including rootstock sprouting, grafted tree growth, and root mass distribution were significantly influenced by the rootstock propagation method, but traits were also influenced by the rootstock cultivar. Our results also suggest that for tissue culture-propagated plants, differences in the starting material and the culturing method can affect the grafted tree behavior. Except for canopy spread and scion to rootstock trunk diameter ratio, tree growth during the orchard stage was determined by the combination of propagation method and rootstock, rather than by propagation method alone.