Search Results
You are looking at 1 - 10 of 24 items for
- Author or Editor: Ursula K. Schuch* x
Eight-week-old potted chrysanthemum (Dendranthema grandiflora Tzvelev. c. Ovaro) plants were treated with a soil drench of 0 or 2.5 mg uniconazole per liter and irrigated daily with 350 or 250 ml of nutrient solution. Plants were frequently water-stressed during their development. At the beginning of anthesis treatments were split and transferred to chambers with 20C/24 hr photoperiod or 25C/dark conditions. Anthesis progressed at the same rate in the two postharvest storage conditions, regardless of previous treatments. Plants were not watered until wilting, which was observed first in control plants under continuous photoperiod (8 days) and last in uniconazole-treated plants in dark storage (12 days). During the first 6 days in storage, evapotranspiration (ET) was lower for plants grown with 250 ml daily irrigation. From day 8 to day 12, when most plants were irrigated after they had wilted, ET was affected by uniconazole and an interaction of uniconazole and storage conditions.
A two-part exercise was developed as part of the horticulture curriculum at Iowa State University to familiarize students with the American Standard for Nursery Stock (ASNS), and to allow them to practice and apply the ASNS with a variety of categories and types of ornamental plants. The first part of the exercise requires students to determine, according to ASNS standards, appropriate root ball/container size for plants to be moved from an existing immature landscape. During the second part, students evaluate whether root ball or container size of plants in a nursery is appropriate for the plant shoot dimensions. The exercise was designed for students to work in informal groups in a cooperative learning environment.
Several large cities in the southwestern United States have set a target to increase their tree canopy cover up to 25%, which often requires more than doubling the current canopy cover. A major goal is to alleviate high temperatures and support public health in addition to gaining all the other benefits conferred by urban forests. Rising temperatures, the arid climate, continued drought, increasing population numbers, and the growing urban forest in the southwestern United States fuel the demand for more water. Using water wisely to garner the benefits of trees requires the application of sufficient irrigation based on the water needs of different species. Current irrigation recommendations for trees are often based on expert consensus. Research-based results of tree irrigation studies from the southwestern United States are presented to give specific examples of how trees respond when they are exposed to different irrigation regimes.
The objective of this study was to determine whether mesquite (Prosopis velutina) seedlings have a preference for the ammonia or nitrate form of nitrogen (N), and to determine the optimum rate of N to maximize growth and minimize N leaching when seedlings are grown in different substrates. Mesquite seedlings were fertigated with different ratios of NH4 +: NO3 - to determine effects on shoot and root growth and N-uptake efficiency. Nutrient solution containing 67% NH4 + : 33% NO3 - resulted in greatest biomass after 120 days of fertigation. N leachate remained stable until 12 weeks after the onset of treatment, but increased significantly by week 16. Subsequently, mesquite seedlings were grown in sand or soilless media and were fertigated with a solution of 67 % NH4 +: 33% NO3 - at a rate of 25, 50, 100, or 200 mg·L-1 of N. After 60 days, plants in media produced 41% more leaves and total biomass compared to those in sand. Leaf number was greatest for plants grown at 200 mg·L-1 of N in both substrates. Root biomass of plants in media showed no response to increasing N concentrations while root biomass of seedlings in sand were similar for the three lower N concentrations and nearly doubled for the highest one. Shoot biomass of seedlings receiving 25, 50, or 100 mg·L-1 of N was similar, but more than doubled for plants fertigated with 200 mg·L-1 of N. N leachate losses were highest from seedlings growing in sand and receiving the two higher N fertigations, those in media had greatest N leachate loss when fertigated at 200 mg·L-1 of N. For balanced mesquite seedling growth and minimum N leaching losses, concentrations between 50 to 100 mg·L-1 of N are recommended. Implications of using a sand culture system vs. soilless growing substrate for nutrition studies will be discussed.
Rose (Rosa sp.) cultivars Blue Girl and Mister Lincoln were harvested bare-root on 1 Nov. 2001 and 22 Nov. 2002 from a commercial nursery in Arizona. Grade 1 plants were then potted and forced to flowering in either Tucson, Ariz., or Tyler, Texas. Total chilling hours were calculated as the number of hours that the plants were exposed to a temperature below 7 °C in the field and during shipping and cold storage. Data were recorded when the petals on the first flower beg an to reflex. Overall, the number of flowering shoots and plant performance was positively correlated to digging date, weeks of cold and total chilling hours received. Days from potting to flower were negatively correlated to weeks of cold storage and chilling hours. However, when the data were separated by location, the number of flowering shoots, the percentage flowering shoots, and plant performance was positively correlated to weeks of cold and chilling hours in Arizona, but was positively correlated to digging date in Texas. Days from potting to first leaf unfolding were recorded in Arizona only and were negatively correlated to weeks of cold storage and chilling hours. Days from potting to flower were negatively correlated to chilling hours at both locations and also to weeks of cold storage in Texas. The increase in chilling from two or four weeks of cold storage increased the number of flowering shoots and performance rating of plants forced in Arizona during both seasons, but only for the 2001 season in Texas. During the 2002 season in Texas, these responses were not influenced by cold storage, but were greater than those seen during the 2001 season. In Arizona, days from potting to flower were greater in 2001 than 2002, and decreased in response to cold storage in 2001, but not in 2002.
Velvet mesquite [Prosopis velutina Woot., Syn.: P. juliflora (Swartz) DC. var. velutina (Woot.) Sarg.] has become more popular in arid landscapes of the southwestern U.S., but little information on N requirements during the seedling stage is available. In addition to optimize growth of seedlings, minimizing N in runoff during production is an important consideration. Experiments were conducted to determine how biomass production and N leaching were affected first by different ratios of ammonium and nitrate N in sand culture and second by different N concentrations when seedlings were grown in two substrates. Mesquite seedlings produced the greatest biomass after 120 days when fertigated with a solution of 33 NO3 –: 67 NH4 +. Loss of N through leachate was 40% greater when NH + 4 comprised two thirds or more compared to one third or none in the fertigation solution. Nitrogen in leachate was highest after 16 weeks of treatment, coinciding with the reduced growth rate of seedlings. The second experiment utilized either sand or commercial growing media and a fertigation solution of 33 NO3 –: 67 NH4 +. Fertigation with 200 mg·L–1 N after 60 days in either substrate produced greatest biomass, while rates of 25, 50, or 100 mg·L–1 N produced about half of that biomass. With few exceptions, less N in either form was found in leachate when seedlings were grown in media and were fertigated with the two higher N rates compared to seedlings grown in sand at the two higher N rates. Plant morphology, biomass accumulation, photosynthate allocation, and the fate of N in the growing substrate and in leachate were strongly affected by the choice of growing substrate.
Moisture loss from bare-root plants during postharvest handling and storage can have a significant effect on plant growth and survival during establishment. Three film-forming antitranspirants and hot wax were applied to bare-root roses packaged after harvesting from the field and before three months of cold storage to determine effects on vegetative growth and flowering. Subsequently, during three weeks under display conditions, plants treated with hot wax resumed growth at the fastest rate compared to control or antitranspirant treatments. Hot wax-treated plants continued to grow at a faster rate than the other plants for two weeks following transplanting in the field. For the remaining 10 weeks of the experiment no differences in vegetative growth or flowering development were found between treatments. Over 70% of the plants treated with hot wax became sunburned, resulting in severe cane damage and plant dieback. Less than 20% of the plants from the other treatments were damaged.
The objectives of this study were to determine 1) the minimum controlled-release fertilizer (CRF) rate and the lowest constant medium moisture required to produce the highest quality plants and 2) if this production system affected quality of these plants under two postproduction light levels. Two New Guinea impatiens (Impatiens sp. hybrids) `Illusion' and `Blazon' (Lasting Impressions Series) differing in salt tolerance were grown for 42 days with a CRF at three rates (3.3, 6.6, or 9.9 g/pot) and two medium moisture levels (low or high) without leaching. The high moisture level (tension setpoints of 1 to 3 kPa) and 6.6 g of CRF/pot produced optimum biomass. Low medium moisture (tension setpoints of 4 to 6 kPa) reduced leaf area, leaf number, leaf N content, root, stem, and leaf dry masses as CRF rate increased from low to high for `Illusion'. Similar results in `Blazon' were observed as CRF rates increased from 3.3 to 6.6 g. Biomass decreased no further at the high rate of 9.9 g/pot. Biomass increased in both cultivars under high medium moisture when CRF rates increased from 3.3 to 6.6 g. Biomass of `Illusion' decreased at 9.9 g/pot, although no symptoms of salt sensitivity were observed (i.e., leaf tip burn). `Blazon' maintained a similar biomass when amended with 9.9 or 6.6 g CRF/pot, although electrical conductivity (EC) in the medium was 5.9 dS·m-1 in the upper half and 4.1 dS·m-1 in the lower half of the medium at the end of production. Growth of `Illusion' responded more favorably to postproduction light levels that were similar to those of production regardless of treatment imposed during production. Similar biomass responses occurred for `Blazon' regardless of the postproduction light level.
Twelve species of woody ornamentals were grown in containers in Riverside and Davis, Calif., to determine plant water use and compare crop coefficients (Kc) calculated with reference evapotranspiration (ET) from local weather stations (ETcim) or atmometers (ETatm). Water use, Kcatm, and Kccim differed by species, location, and month of the year. Raphiolepis indica (L.) Lindl., Pittosporum tobira (Thunb.) Ait., Juniperus sabina L., and Photinia ×fraseri Dress. were the highest water users in Riverside and Arctostaphylos densiflora M.S. Bak., Juniperus, Cercis occidentalis Torr., and Pittosporum used the highest amount of water in Davis, when averaged over the 20-month study period. Rhamnus californica Eschsch., Prunus ilicifolia (Nutt.) Walp., and Cercocarpus minutiflorus Abrams. were among the lowest water users in both locations. Although plant water use fluctuated considerably between individual sampling dates, the relative ranking of species water use in each location changed very little over the study period. During periods of high winds, ETcim may not provide an accurate reference for container crops. Kc values fluctuated seasonally from as much as 1 to 4.7 for high water users, while values were stable for low water users and also for Buxus microphylla japonica Rehd. & E.H. Wils., an intermediate water user. During periods of low ET, especially in fall and winter, Kc values were artificially high and failed to correspond to the plants' low water use. Kc values for low water users seem to be useful to estimate water requirements over an extended period of time, whereas general Kc values seem to have limited value for plants with high water demand and need to be modified for different growth stages and growing locations.
Poinsettia (Euphorbia pulcherrima `Gutbier V-14 Glory') were grown using commercially available poinsettia fertilizer of various combinations of controlled-release (CRF) and constant liquid fertilizer (LF). At the end of the production period, plants treated with 83, 165 or 250 mg/l LF only were 10% taller than plants treated with the same concentrations of CRF. The total number of cyathia and the number of open cyathia at harvest was 18% and 50% higher for plants treated with LF only compared to plants treated with CRF only. Plants treated with 165 CRF/ 83 LF or 83 CRF/250 LF were not different compared to 250 CRF/0 LF or 0 CRF/ 250 LF in height, number of cyathia at anthesis, and total number of cyathia at the end of the production period. When LF was changed to clear water 5 weeks before the end of production, nitrate runoff from 83 CRF/250 LF treatment was reduced 30% for the last two weeks, and from the 165 CRF/83 LF treatment nitrate leachate was reduced gradually from 33 to 66% over the 5-week period.