Search Results
You are looking at 1 - 6 of 6 items for :
- Author or Editor: Tomasz Anisko x
- HortScience x
The effect of water stress on cold hardiness was examined in evergreen azaleas, `Coral Bell' (CB), `Hinodegiri' (HD), and `Red Ruffle' (RR). Plants were well-watered between 8 Aug. and 1 Nov. (wet) or were subjected to 3 weeks of reduced water supply starting on one of three dates, 1 Aug. (dry 1), 29 Aug. (dry 2), and 19 Sept. (dry 3). Cold hardiness of leaves and lower, middle, and upper stems was tested on 29 Aug., 19 Sept., 10 Oct., 1 Nov. By the end of each 3-week period, water potential of water stressed plants reached –1.5 to –1.8 MPa compared to around –0.8 MPa of well-watered plants. Reducing the water supply significantly increased cold hardiness of all tested plant parts in all cultivars regardless of timing of watering reduction, with two exceptions, CB middle stems on 29 Aug. and HD leaves on 19 Oct. Three weeks after rewatering cold hardiness of water-stressed plants did not differ significantly from well-watered plants, except for HD plants under dry three treatment, which continued to be 1.0 (middle stems) to 4.3 (upper stems) more cold hardy.
Three cultivars of evergreen azaleas, `Coral Bell', `Hinodegiri', and `Red Ruffle', were grown under four watering regimes in containers and placed outdoors or in the greenhouse. The water content of the growing medium was maintained at either 0.3 to 0.4 or 0.5 to 0.6 m3m-3 from June 16 to August 30, when half of the plants under each of these regime was switched to the other watering regime. Freeze tests were conducted on August 30 and October 9, 1993. Injury to leaves, lower, middle, and upper stems was evaluated visually. Acclimation of leaves and upper stems prior to the August test, in most cases, was not stimulated by reduced water content, while the response of lower and middle stems was cultivar and location specific. The lower water content treatment after August 30 generally increased freeze tolerance of all plant parts regardless of the previous watering regime. The higher water content treatment after August 30 either prevented or delayed acclimation.
The purpose of the present study was to determine whether water stress affects tolerance of Rhododendron L. `Catawbiense Boursault' to rapid freezing. Tolerance to freezing at cooling rates of 2 or 6C/hour in stems and leaves of plants subjected to continuous and periodic water deficit stresses was examined. Under continuous stress treatments, water content of the growing medium was maintained in a range of 0.60 to 0.75, 0.45 to 0.60, or 0.30 to 0.45 m3·m–3 between 24 Aug. 1992 and 11 Feb. 1994. Under periodic stress treatments, water content of the growing medium was maintained near field capacity, i.e., 0.6 to 0.8 m3·m–3, for the duration of the study or plants were subjected to the periodic stress at various times between 15 July and 19 Feb. during 2 years. Watering of water-stressed plants was delayed until water content reached below 0.4 m3·m–3, and then was resumed to maintain water content in the range of 0.3 to 0.4 m3·m–3. Cold hardiness was evaluated in the laboratory with freeze tolerance tests on detached leaves and stem sections. In most cases, cooling at 6C/hour caused injury at higher temperature than cooling at 2C/hour. The difference in lethal temperature between the two cooling rates depended on the level of the plant's cold hardiness. In plants cold hardy to about –25C, freezing at 6C/hour caused injury at a temperature ≈3C higher than freezing at 2C/hour. The effect of cooling rate was not evident in plants cold hardy to about –18C. Subjecting plants to continuous or periodic water stress did not have an effect on this relationship.
Although differential thermal analysis has been routinely used to evaluate cold hardiness, the relationship between deep supercooling ability and plant survival is not clear. We compared seasonal profiles of changes in low-temperature exotherm (LTE) occurrence and visually determined lowest survival temperature (LST) of Acer rubrum `Armstrong', Fraxinus americana `Autumn Purple' and Zelkova serrata `Green Village' growing in three locations representing plant cold hardiness zones 8, 7 and 5. Between December and February, LTE in Acer rubrum and Fraxinus americana occurred at temperatures 10 to 25C lower than the LST. The difference between LTE and LST was not significant for Zelkova serrata from January to April, and for Acer rubrum and Fraxinus americana in March. Data indicate that LTE could be used as an estimate of LST in Zelkova serrata but not in Acer rubrum and Fraxinus americana. This study demonstrated that LTE does not provide a reliable estimate of cold hardiness in all species that deep supercool.
Freeze tests were performed on stem sections of Fraxinus americana, Lagerstroemia indica Magnolia gradiflora, Rhododendron `Red Ruffle', Zelkova serrata, and leaves of Magnolia grandiflora and Rhododendron `Red Ruffle' in the tinter and summer of 1993. Freeze injury was quantified using electrolyte and phenolic leakage techniques and compared to the lethal temperature range determined by visual method assisted by differential thermal analysis. Richards function was fitted to the electrolyte and phenolic leakage data by the modified Gauss-Newton method. The inflection point of the Richards function coincided with the lethal injury range for non-acclimated leaves, but overestimated the freeze tolerance for acclimated leaves and for both acclimated and non-acclimated stems. A proposed interception point of the lower asymptote and a line tangential to the curve inflection point provided an improved estimate of the lethal injury range in most of the species.
The time-domain reflectometry (TDR) method of measuring water content has been applied to mineral soils but not to organic growing media. We investigated the applicability of TDR for measuring the water content of organic media in containers. TDR calibration was conducted for sand, peat, composted pine bark, sand and peat mix, sand and bark mix, and a commercial growing medium (Metro Mix 300). Regression analysis of volumetric water content was conducted with the ratio of apparent: physical length of the probe (La: L) as an independent variable. The calibration curve for Metro Mix 300 was compared to curves generated for a range of soils by other investigators. Additionally, water-content and La: L changes were monitored in Metro Mix 300 for 10 months and were compared to predicted values from the calibration curve. Organic media had a higher water content than sand for the same La: L value. Equations developed by previous authors generally underestimated water content when compared with the calibration curve for Metro Mix 300. We attribute this difference to a large fraction of highly decomposed organic matter or vermiculite and, thus, to the presence of more bound water. Specific calibration of TDR may be required to determine the absolute water content of organic growing media.