Search Results
You are looking at 1 - 10 of 33 items for :
- Author or Editor: Timothy K. Broschat x
- HortTechnology x
Ixoras (Ixora L.) growing in calcareous sandy soils are highly susceptible to a reddish leaf spot disorder. Symptoms appear on the oldest leaves of a shoot and consist of irregular diffuse brownish-red blotches on slightly chlorotic leaves. Symptoms of K deficiency, P deficiency, and both K and P deficiency were induced in container-grown Ixora `Nora Grant' by withholding the appropriate element from the fertilization regime. Potassium-deficient ixoras showed sharply delimited necrotic spotting on the oldest leaves, were stunted in overall size, and retained fewer leaves per shoot than control plants. Phosphorus-deficient plants showed no spotting, but had uniformly brownish-red older leaves and olive-green younger foliage. Plants deficient in both elements displayed symptoms similar to those observed on landscape plants. Symptomatic experimental and landscape ixoras all had low foliar concentrations of both K and P.
Downy jasmines [Jasminum multiflorum (Burm. f.) Andr.] and areca palms [Dypsis lutescens (H. Wendl.) Beentje & J. Dransf.] were grown in containers filled with a fine sand soil (SS) or with a pine bark-based potting substrate (PS). Each of these substrates was amended with 0%, 10%, or 20% clinoptilolitic zeolite (CZ) by volume. Plants were fertilized monthly with a water-nonsoluble 20N-4.3P-16.6K granular fertilizer. Downy jasmines were larger and had darker color in CZ-amended PS and were larger in CZ-amended SS than in nonamended SS or PS. Areca palms, which tend to be limited by K in SS had better color and larger size when the SS was amended with CZ. In PS, where K is seldom limiting, areca palms did not respond to CZ amendment of the PS. Both ammonium (NH4)-N and potassium (K) were retained against leaching by CZ, but some of the NH4-N adsorbed to CZ was subject to nitrification, either before or after its release into the soil solution. Some phosphate (PO4)-P was also retained by CZ.
Twenty-two preemergent herbicides were applied at their maximum labeled rates and twice those rates to determine their safety and effectiveness on areca palm [Dypsis lutescens (H. Wendl.) Beentje & Dransf.], pygmy date palm (Phoenix roebelenii O'Brien), and mexican fan palm (Washingtonia robusta H. Wendl.). Two products, dichlobenil and metolachlor showed consistent phytotoxicity on all three species. Several of the remaining products caused death of the apical meristem in mexican fan palms and reduced growth rates in pygmy date palms, but most caused little damage to areca palms. Herbicides applied as sprays generally remained effective for 2 to 4 months, whereas granular products, especially those containing oxyfluorfen plus another chemical, were effective for up to 8 months.
Germination rate was significantly improved by removing the thick, hard endocarp from Butia capitata (pindo palm) fruit. Time to 50% of final germination rate was not affected by endocarp removal. Afterripening storage did not improve germination rate or time. Germination at 104 °F (40 °C) was superior to that at 93 °F (34 °C).
`Petite Yellow' dwarf ixoras (Ixora spp.) were grown in an alkaline substrate (3 limestone gravel: 2 coir dust) or a poorly aerated composted seaweed substrate to induce iron (Fe) chlorosis. Chlorotic plants were fertilized every 2 months with soil applications of 0.1 g (0.0035 oz) Fe per 2.4-L (0.63-gal) pot using ferrous sulfate, ferric diethylenetriaminepentaacetic acid (FeDTPA), ferric ethylenediaminedi-o-hydroxyphenylacetic acid (FeEDDHA), Hampshire Iron (FeHEDTA plus FeEDTA), ferric citrate, iron glucoheptonate, or DisperSul Iron (sulfur plus ferrous sulfate). Additional chlorotic ixoras growing in a substrate of 3 sedge peat: 2 cypress sawdust: 1 sand were treated every 2 months with foliar sprays of Fe at 0.8 g·L-1 (0.11 oz/gal) from ferrous sulfate, FeDTPA, FeEDDHA, ferric citrate, or iron glucoheptonate. Only chelated Fe sources significantly improved ixora chlorosis when applied to the soil, regardless of whether the chlorosis was induced by an alkaline substrate or a poorly aerated one. As a foliar spray, only FeDTPA was effective in improving chlorosis in dwarf ixora. Leaf Fe content either showed no relationship to plant color or was negatively correlated with plant chlorosis ratings.
Container-grown Bougainvillea Comm. Ex Juss. `Brasiliensis' were fertilized with ammonium sulfate, sodium nitrate, or ammonium sulfate plus sodium nitrate as N sources. Plants fertilized with sodium nitrate were stunted, extremely chlorotic, and produced few flowers compared to those receiving ammonium sulfate. In a second experiment bougainvilleas were fertilized with 12 different controlled-release or soluble ammonium, urea, or nitrate fertilizers as N sources. Plants grown with only nitrate N were chlorotic, stunted, and produced fewer flowers compared to those receiving N from urea or ammonium salts. High substrate pH, associated with nitrate fertilization, was believed to be a cause of the chlorosis, but possible toxicity symptoms (small necrotic lesions and premature leafdrop) were also observed on nitrate-treated plants. Plants receiving controlled-release urea or potassium nitrate were of higher quality than those receiving similar uncoated fertilizers.
Five-gram (0.18 oz) samples of two controlled-release fertilizers (CRFs), Osmocote 15N–3.9P–10K (8–9 month) (OSM) and Nutricote 18N–2.6P–6.7K (type 180) (NUTR), were sealed into polypropylene mesh packets that were placed on the surface of a 5 pine bark: 4 sedge peat: 1 sand (by volume) potting substrate (PS), buried 10 cm (3.9 inches) deep below the surface of PS, buried 10 cm below the surface of saturated silica sand (SS), or in a container of deionized water only. Containers with PS received 120 mL (4.1 floz) of deionized water three times per week, but the containers with SS or water only had no drainage and were sealed to prevent evaporation. Samples were removed after 2, 5, or 7 months of incubation at 23 °C (73.4 °F) and fertilizer prills were crushed, extracted with water, and analyzed for ammonium-nitrogen (NH4-N), nitrate-nitrogen (NO3-N), phosphorus (P), and potassium (K). Release rates of NO3-N were slightly faster than those of NH4-N and both N ions were released from both products much more rapidly than P or K. After 7 months, OSM prills retained only 8% of their NO3-N, 11% of their NH4-N, 25% of their K, and 46% of their P when averaged across all treatments. Nutricote prills retained 21% of their NO3-N, 28% of their NH4-N, 51% of their K, and 65% of their P. Release of all nutrients from both fertilizers was slowest when applied to the surface of PS, while both products released most rapidly in water only. Release rates in water only exceeded those in SS, presumably due to lower rates of mass flow in SS.
Release rates at 21 °C were determined in sand columns for 12 commercially available soluble and controlled-release Mg fertilizers. Lutz Mg spikes, K2SO4, MgSO4, MgSO4·H2O, and MgSO4·7H2O released their Mg within 2 to 3 weeks. Within the first 6 weeks, MgO·MgSO4 released its soluble Mg fraction, but little release occurred thereafter. Dolomite and MgO released <5% of their Mg over 2 years while MagAmp released <20% of its Mg. Florikan 1N-0P-26K-4Mg types 100 and 180 exhibited typical controlled-release fertilizer characteristics, with most of their Mg release occurring during the first 15 weeks.
Three species of tropical shrubs, bush allamanda (Allamanda schottii), ixora (Ixora ‘Nora Grant’), and surinam cherry (Eugenia uniflora), were planted into a native sand soil and a calcareous fill soil in south Florida and were fertilized with a 24N–0P–9.2K (24–0–11) turf fertilizer or an 8N–0P–10K–6Mg plus micronutrients (8–0–12) palm fertilizer at rates of 10 or 20 g of nitrogen (N) per shrub four times per year. Two additional treatments using a 0–0–13.3K–6Mg plus micronutrients (0–0–16) palm fertilizer were applied at equivalent rates of potassium (K) (12.5 or 25 g/shrub of K) to that applied in the two 8–0–12 palm fertilizer treatments. Shrub size measurements, nutrient deficiency severity ratings, number of flowers, and shrub density ratings were determined at 6 months after planting (establishment period) and at 3 years after planting (maintenance phase). Data from these measured variables were subjected to principal component analysis to obtain a single measure of overall quality, namely, the scores for each plant on the first principal component. During the establishment period, ixora fertilized with the high rate of 8–0–12 had the highest quality on the sand soil, but there were no differences among treatments on the fill soil for this species or on either soil type for allamanda and surinam cherry. After 3 years of growth, ixora showed no differences in quality on either soil in response to the fertilizer treatments. On the sand soil, allamanda receiving the high rate of 24–0–11 or the low rate of 8–0–12 had significantly higher quality than unfertilized control plants, and the low rate of 8–0–12 produced the highest quality plants on the fill soil. Surinam cherry grown on sand soil had the highest qualities when fertilized with the high rates of either 24–0–11 or 8–0–12. In general, leaf nutrient concentrations were inversely correlated with overall shrub quality, with largest, highest quality plants having the lowest nutrient concentrations because of dilution effects. However, leaf manganese (Mn) concentrations were consistently within deficiency ranges for all species under most treatments, suggesting that Mn deficiency was stunting shrub growth on both soil types.
Broadleaf ornamental trees are known to vary widely in their responses to fertilization, depending on the species and soil and other environmental factors. Thus, it is important to study the responses of a wide range of tree species to fertilization, especially on nutrient-poor soils. Four species of temperate to tropical trees, live oak (Quercus virginiana), west indian mahogany (Swietenia mahagoni), black olive (Bucida buceras ‘Shady Lady’), and beautyleaf (Calophyllum brasiliense), planted into a sandy native soil in south Florida were fertilized with a 24N–0P–9.3K turf fertilizer or an 8N–0P–10K–4Mg plus micronutrients palm fertilizer at rates of 10 or 20 g of nitrogen per tree four times per year. Tree height, width, caliper, and nutrient deficiency rating scores for nitrogen, potassium, and magnesium were determined at 1 year after planting (establishment period) and at 3 years after planting (maintenance phase). Data from these measured variables were subjected to principal component analysis to obtain a single measure of overall quality, namely, the scores for each tree on the first principal component. West Indian mahogany showed no response to fertilization during or following establishment. Either fertilizer type or rate improved live oak, black olive, and beautyleaf quality over that of unfertilized controls during both establishment and maintenance phases, but the high rate of the palm fertilizer was superior to either rate of the turf fertilizer for beautyleaf both during establishment and afterward. Leaf nutrient concentrations generally were poorly correlated with overall tree quality, but manganese concentrations differed significantly among treatments for all four species. Based on these results, fertilization of West Indian mahogany is not recommended, but live oak, black olive, and beautyleaf will benefit from fertilizer applied at the time of planting and after establishment.