Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Timothy J. Raiford x
  • HortScience x
Clear All Modify Search

Abstract

Storage of Caladium × hortulanum L. tubers at 5°C for 1 to 3 weeks resulted in an elevation in CO2 production when transferred to 22°. A decrease in storage temperature from 22° to 1° resulted in an increase in respiratory activity following transfer of tubers to 22°. The respiratory burst associated with low temperature storage was greatest following 24 hr at 22°, after which a decline in CO2 production was seen. Electrolyte leakage from ‘Carolyn Whorton’ tuber disks increased when tubers were held for either 3 weeks at 5° or 2 weeks at 1°, as compared to shorter durations of chilling or higher temperatures. Sprouting (days to emergence) of planted tubers was delayed following low temperature storage, as compared to tubers held at 22°. Although delayed, all tubers sprouted when held a maximum of 3 weeks at 5°, or 2 weeks at 1°.

Open Access

Abstract

Mefluidide was applied as a foliar spray to the point of runoff to plants of Hibiscus rosa-sinensis L. ‘Pink Versicolor’ at 0, 500, 1000, 2000, 4000, and 8000 mg/liter. Mefluidide treatment increased lateral branching, but inhibited the length of lateral growth and plant height as compared to untreated controls. Tip necrosis of young, expanding leaves was seen at the lowest mefluidide concentration, and increased to the point of severe defoliation of plants at the highest concentration. Mefluidide delayed flowering, but increased the number of flower buds produced. In a 2nd experiment, single and double spray applications of 0, 100, 200, 400, and 800 mg/liter mefluidide were evaluated in comparison to hand-pinching the plants. Both pinching and mefluidide application increased the number of lateral shoots, compared to an untreated control. In contrast to pinched plants, mefluidide treatment inhibited the average length of the lateral shoots. Double applications of mefluidide inhibited plant height, lateral shoot number, and shoot length, as compared to single applications. Treatment with 10 mg/liter gibberellic acid following mefluidide applications was ineffective in reversing the effects of mefluidide on hibiscus growth. Chemical name used: N-[2,4-dimethyl-5-[[(trifluoromethyl)sulfonyl]amino]phenyl]acetamide (mefluidide).

Open Access