Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Timothy F. Wenslaff x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Abstract

A study of reproductive barriers limiting interspecific hybridization between Carica papaya L. and C. cauliflora Jacq. was undertaken in four reciprocal interspecific crosses using two different lines of each species. Particular attention was focused on determining whether polyembryonic clusters produced in these crosses were of maternal or zygotic origin. Prezygotic barriers were unimportant; pollen tube penetration and zygote formation were similar in intra- and interspecific crosses. Substantial postzygotic disruptions were observed, including disorganized growth and abortion of hybrid embryos and lack of normal endosperm development. In most crosses, disorganized embryos aborted before differentiating into polyembryonic structures. However, crosses employing UH345 (C. cauliflora) as female parent produced some embryos that developed to maturity (6 months), and, in these crosses, embryogenic proliferation from zygotic tissue became evident as early as the beginning of the 3rd month. There was no evidence of somatic embryogenesis from maternal tissues in any cross. Embryos rescued 3 to 6 months after pollination continued embryogenic growth in vitro on basal Murashige and Skoog (MS) medium and germinated on medium containing 0.2 mg BA/liter and 0.5 mg NAA/liter. Zymograms assayed for isocitrate dehydrogenase, malate dehydrogenase, and phosphoglucomutase activity confirmed the zygotic origin of tissues taken from in vitro cultures and recovered plantlets. Vigor, viability, and fertility (< 1% stainable pollen) of hybrids recovered from embryo culture were low. Chemical names used: 6-benzylaminopurine (BA); 1-napthaleneacetic acid (NAA).

Open Access

Abstract

Interspecific hybridizations were attempted between papaya (Carica papaya L.) and six Carica taxa, including C. monoica Desf., C. parviflora (A. DC.) Solms, C. pubescens Lenne et Koch, C. quercifolia (St. Hil.) Hieron., stipulata Badillo, and C. × heilbornii Badillo nm. pentagona (Heilborn). Prezygotic barriers were minimal; pollen tubes of wild species freely penetrated into the seed cavity of papaya, and papaya pollen tubes were similarly unhindered in reciprocal pollinations on C. pubescens. Postzygotic barriers were formidable due to ovule abortion and endosperm failure. However, dissection of more than 150 C. papaya fruits 90 to 180 days after interspecific pollination yielded at least a few hybrid embryos of each species combination. All crosses in which C. papaya was the male parent failed, with the exception of C. pubescens × C. papaya, which succeeded only after young ovules were cultured 30 to 45 days after pollination. Multiple embryos were common in all successful crosses, and these were shown to be of zygotic origin by analyses of isocitrate dehydrogenase, malate dehydrogenase, and phosphoglucomutase isozymes in parental and hybrid tissues. Hybrids successfully recovered from in vitro cultures included C. papaya × C. pubescens and reciprocal, C. papaya × C. quercifolia, and C. papaya × C. stipulata.

Open Access