Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Thomas S. Brettin x
  • HortScience x
Clear All Modify Search

Sour cherry (Prunus cerasus) is an allotetraploid with sweet cherry (P. avium) and ground cherry (P. fruticosa) as the proposed progenitor species. Three cpDNA markers from eight sweet, four ground, and 26 sour cherry selections were analyzed to investigate the relatedness of their cp genomes. To date, two RFLP polymorphisms have been identified with both the P2 and P4 fragments of tomato cpDNA, while four length polymorphisms of an intergenic spacer have been identified by PCR amplification. Sweet and ground cherry have different cp polymorphisms, while sour cherry individuals have been identified that have the sweet and ground cherry polymorphisms plus a unique polymorphism. Additional individuals chosen to represent the diversity within each species will be screened to provide a more complete assessment of cp diversity. In addition, progeny from a sour cherry cross where the parents have different cp polymorphisms are being evaluated to determine if the chloroplasts are exclusively maternally inherited.

Free access

We have used isozyme techniques (SGE) to assess variation and begin construction of a genetic map of the Asparagus officinalis genome. Isozyme extraction buffers, electrophoretic buffer systems, and isozyme stability during storage were evaluated. Isozyme expression under different environmental conditions was also examined. Thirty-four enzymes were evaluated for their usefulness as genetic markers in A. officinalis. Of these 34, 13 had sufficient activity and resolution on the gels for isozyme analysis. Of the 13 enzyme systems resolved, polymorphisms were observed in aconitase, endopeptidase, malate dehydrogenase, phosphoglucomutase, and shikimate dehydrogenase. Segregation of putative alleles is presented for ACON, END, MDH, PGM and SKDH isozymes. Co-segregation data showed linkage between a SKDH locus and a PGM locus. The isozyme analysis also included Asparagus densiflorus `Sprengeri' and revealed that aspartate aminotransaminase, endopeptidase, and triosephosphate isomerase would be potentially useful for verification of cell fusion products between the two species.

Free access