Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Thomas A. Bewick x
- Journal of the American Society for Horticultural Science x
Absorption of “C-labeled glyphosate by whole carrot (Daucus carota L.) plants infected or not infected by swamp dodder (Cuscuta gronovii Willd ex R & S) increased from 14% 1 day after treatment to 56% 14 days after treatment. Absorption of 14C-labeled glyphosate did not increase from 14 to 45 days after treatment. 14Carbon-labeled glyphosate appeared in the carrot root 1 day after application and its concentration increased with time in both infected and noninfected plants until 14 days after treatment. From 14 to 45 days after treatment, the concentration of 14C-labeled glyphosate in the roots decreased. At 1 day after treatment, dodder tissue contained as much 14C-labeled glyphosate as any physiological sink in the carrot. At 45 days after treatment, dodder tissue contained more 14C-labeled glyphosate than all other physiological sinks, except the petiole of the treated leaf. Swamp dodder stems had absorbed 14C-labeled glyphosate directly from a solution within 1 day after treatment. Chemical name used: N-(phosphonomethyl)glycine (glyphosphate).
Abstract
A simple model that predicts the onset of swamp dodder (Cuscuta gronovii Willd. ex R. & S. # CVCGR) emergence was developed. The use of growing degree days (GDD) with low-temperature thresholds (LTT) of 3.3° or 0°C had a better fit as a predictor for the beginning of emergence than either air temperature or soil temperature at a depth of 30 mm alone. This model can be used to time preemergence herbicide applications to coincide with the period of maximum dodder sensitivity, thereby increasing herbicide efficacy.
Poor emergence of commercially grown lettuce has been observed when planted immediately after the removal of a celery crop. Greenhouse experiments were conducted to evaluate the possible allelopathic effects of celery residue on the emergence and growth of lettuce. The influence of amount and type of celery tissue, growth medium and fertility, incubation time in soil, and amendment of growth medium containing celery residue with activated charcoal was evaluated with respect to the allelopathic potential of celery. Celery root tissue was 1.8 and 1.6 times more toxic to lettuce seedling growth than was celery petiole or lamina tissue, respectively. Lettuce shoot growth was inhibited to a greater extent when grown in sand amended with celery residue rather than either amended vermiculite or potting soil. Incubation of celery root residue in soil for 4 weeks increased phytotoxicity at 1% (v/v) and decreased it at 4% (v/v). Increasing the fertility of pure sand with varying amounts of Hoagland's solution did not reverse the allelopathic effects of celery residue. The addition of activated carbon to the medium increased the growth of lettuce exposed to celery residues. Celery residues possess allelopathic potential to developing lettuce seedlings. Celery tissue type and concentration, soil type, incubation of celery root residue in soil, and addition of activated carbon to the growing medium influenced the magnitude of the observed phytotoxicity.
Glyphosate-resistant plants of `South Bay' lettuce (Lactuca sativa L.) were produced by using Agrobacterium tumefaciens containing a plasmid carrying glyphosate oxidase and EPSPS gene. An in vitro assay was performed to determine the sensitivity of `South Bay' leaf discs and seedling explants to varying glyphosate concentrations. The I50 for glyphosate leaf discs was 53.8 μm and for glyphosate seedlings 7.6 μm. There was a high correlation between the response of leaf discs and seedlings to glyphosate based on dry weight. These findings will allow identification of glyphosate-resistant transformants in an early stage of plant development, saving time and reducing the cost in generating an improved cultivar with the glyphosate resistance trait.