Search Results

You are looking at 1 - 9 of 9 items for :

  • Author or Editor: T.K. Hartz x
  • HortTechnology x
Clear All Modify Search
Author:

Overcoming environmental stresses during seedling establishment is crucial to successful vegetable production. In the irrigated production areas of the southwestern United States, stress most often is related to unfavorable temperature, soil or water salinity, or poor soil structure; it is frequently difficult to separate the effects of these stresses because they may all be present to some significant degree. Growers use a variety of techniques to ameliorate these conditions. Advances in seed technology have improved seedling establishment under unfavorable temperatures, particularly for lettuce. The use of sprinkler irrigation for stand establishment has become a widespread practice; sprinkling moderates soil temperature, minimizes salinity in the zone of germination, and reduces soil crusting. By modifying bed configuration, growers have been able to increase soil temperature to stimulate germination. Modifying seed placement and furrow irrigation patterns can create zones of lower salinity. Various chemical and physical treatments have proven effective in reducing soil crusting. The use of transplants-has expanded for many crops, both as a means to circumvent seedling establishment problems, as well as a technique to obtain earliness.

Full access
Author:

Many factors influence appropriate drip irrigation management, including system design, soil characteristics, crop and growth stage, and environmental conditions. The influences of these factors can be integrated into a practical, efficient scheduling system that determines quantity and timing of drip irrigation. This system combines direct soil moisture measurement with a water budget approach using evapotranspiration estimates and crop coefficients.

Full access
Author:

Nutrient loss from commercial vegetable fields has become a significant environmental issue in all the major vegetable-producing regions of the United States. Growers are facing potentially disruptive regulations aimed at improving the quality of both surface and ground water. Significant improvement in nutrient management will be required to meet this regulatory challenge. This paper discusses five practical, low-cost nutrient best management practices (BMPs). These BMPs are widely applicable, relatively inexpensive to implement, and can dramatically reduce nitrogen and phosphorus loss from vegetable fields. However, even with careful application of these BMPs, runoff and leachate from vegetable fields may periodically exceed environmental water quality standards, which are very stringent.

Full access
Authors: and

Drip irrigation provides an efficient method of fertilizer delivery virtually free of cultural constraints that characterize other production systems. Achieving maximum fertigation efficiency requires knowledge of crop nutrient requirements, soil nutrient supply, fertilizer injection technology, irrigation scheduling, and crop and soil monitoring techniques. If properly managed, fertigation through drip irrigation lines can reduce overall fertilizer application rates and minimize adverse environmental impact of vegetable production.

Full access
Authors: and

Limited soil nitrogen (N) availability is a common problem in organic vegetable production that often necessitates in-season fertilization. The rate of net nitrogen mineralization (Nmin) from four organic fertilizers (seabird guano, hydrolyzed fish powder, feather meal, and blood meal) containing between 11.7% and 15.8% N was compared in a laboratory incubation. The fertilizers were mixed with soil from a field under organic management and incubated aerobically at constant moisture at 10, 15, 20, and 25 °C. Nmin was determined on samples extracted after 1, 2, 4, and 8 weeks. Rapid Nmin was observed from all fertilizers at all temperatures; within 2 weeks between 47% and 60% of organic N had been mineralized. Temperature had only modest effects, with 8-week Nmin averaging 56% and 66% across fertilizers at 10 and 25 °C, respectively. Across temperatures, 8-week Nmin averaged 60%, 61%, 62%, and 66% for feather meal, seabird guano, fish powder, and blood meal, respectively. Cost per unit of available N (mineralized N + initial inorganic N) varied widely among fertilizers, with feather meal the least and fish powder the most expensive.

Full access
Authors: , , and

Limited soil nitrogen (N) availability is a common problem in organic vegetable production that often necessitates additional N fertilization. The increasing use of drip irrigation has created a demand for liquid organic fertilizers that can be applied with irrigation. The N availability of three liquid organic fertilizers was evaluated in an incubation study and a greenhouse bioassay. Phytamin 801 contained fishery wastes and seabird guano, while Phytamin 421 and Biolyzer were formulated from plant materials. The fertilizers ranged from 26 to 60 g·kg−1 N, 8% to 21% of which was associated with particulate matter large enough to potentially be removed by drip irrigation system filtration. The fertilizers were incubated aerobically in two organically managed soils at constant moisture at 15 and 25 °C, and sampled for mineral N concentration after 1, 2, and 4 weeks. In the greenhouse study, these fertilizers and an inorganic fertilizer (ammonium sulfate) were applied to pots of the two organically managed soils with established fescue (Festuca arundinacea) turf; the N content of clippings was compared with that from unfertilized pots after 2 and 4 weeks of growth. Across soils and incubation temperatures, the N availability from Phytamin 801 ranged from 79% to 93% of the initial N content after 1 week, and 83% to 99% after 4 weeks. The plant-based fertilizers had significantly lower N availability, but after 4 weeks, had 48% to 92% of initial N in mineral form. Soil and incubation temperature had modest but significant effects on fertilizer N availability. Nitrification was rapid, with >90% of mineral N in nitrate form after 1 week of incubation at 25 °C, or 2 weeks at 15 °C. N recovery in fescue clippings 4 weeks after application averaged 60%, 38%, and 36% of initial N content for Phytamin 801, Phytamin 421, and Biolyzer, respectively, equivalent to or better than the N recovery from ammonium sulfate.

Full access
Authors: and

Research on controlled-release fertilizers (CRF) in vegetable production has been conducted in California for several decades, and commercial CRF products have been marketed throughout most of that time. CRF remain niche products used on only a small percentage of vegetable fields. The potential advantage of CRF is maximized in production systems in which in-season nitrogen (N) leaching is significant but beyond the control of the grower, and where there are cultural constraints on in-season fertilizer application. Neither of those conditions is typical of the California industry. Annual rainfall in the major vegetable-producing regions averages less than 400 mm, with the majority of that received during winter months when vegetable production is limited; in-season leaching occurs almost exclusively from irrigation. The alluvial soils favored for vegetable production tend to be relatively fine-textured, with high water holding capacity that reduces N leaching potential. The widespread adoption of drip irrigation allows for efficient irrigation and for multiple applications of less expensive N fertilizers in synchrony with crop demand. Under representative California field conditions it has been difficult to show a horticultural benefit from the use of CRF, and the higher cost of these products has therefore limited their use. Future government regulation for water quality protection may require more efficient N fertilization practices, but significant expansion of CRF use is unlikely even under that scenario.

Free access

Diagnosis and Recommendation Integrated System (DRIS) norms were derived for processing tomato (Lycopersicon esculentum Mill.) from a 1993-94 survey of >100 fields in the Sacramento and San Joaquin Valleys of California. Relative foliar N, P, K, Ca, Mg, and S concentrations were expressed in ratio form, with DRIS norms calculated as the means of fields with fruit yield ≥90 Mg·ha-1. Norms were developed for three growth stages: first bloom, full bloom, and 10% of fruits ripe. Optimum foliar nutrient concentration ranges were calculated by regression analysis from DRIS nutrient indices of high-yield fields. These optimum ranges were in general agreement with existing empirically derived sufficiency ranges for N and P, higher for Ca, Mg, and S, and much lower for K. The relatively low foliar K levels observed were attributed primarily to the strongly determinate growth habit of currently used cultivars. In the fields sampled, yield-limiting nutrient deficiency appeared to be rare.

Full access

California melon (Cucumis melo) growers commonly apply calcium (Ca) fertilizers during fruit development to increase fruit firmness and improve storage life. Drip-irrigated field trials were conducted in central California in 2005 and 2006 to evaluate the efficacy of this practice on honeydew (C. melo Inodorus group) and muskmelon (C. melo Reticulatus group). In the 2005 honeydew trial, three weekly applications of 10 lb/acre Ca from calcium nitrate (CN), calcium thiosulfate (CTS), or calcium chloride (CC) were injected into the irrigation system during early melon development. In the 2006 muskmelon trial, two applications of 15 lb/acre Ca from CTS or CC were made early, or two applications of CC late, in melon development. The effect of these Ca fertigation treatments on fruit yield, soluble solids concentration, flesh firmness, and Ca concentration were compared with an untreated control receiving no Ca fertigation. Calcium fertigation had no effect on marketable yield, quality, or Ca concentration of honeydew or muskmelon fruit regardless of application timing or Ca source applied. Loss of firmness during either 2 weeks (honeydew) or 1 week (muskmelon) of postharvest storage was unrelated to Ca fertigation treatment and was not correlated with Ca concentration in fruit tissue. We conclude that under conditions representative of the California melon industry, Ca fertigation at typical application rates is ineffective in improving honeydew or muskmelon yield or fruit quality.

Full access