Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: T.D. Phillips x
  • HortScience x
Clear All Modify Search
Authors: and

Students in plant science courses have difficulty thoroughly understanding the effect of water stress on net photosynthesis and its consequences—reduced plant growth, productivity, quality, and profit. A laboratory demonstration utilizing a controlled water table irrigation system (CWT) provides a nearly constant plant water potential. Pots are placed on a capillary mat with one end suspended in a trough with nutrient solution. The vertical distance from the solution surface to the pot bottom determines the water potential; the water potential is 0 when the pot bottom is at the same level as the nutrient solution. The greater the vertical distance from solution to the pot bottom, the lower the water potential. For this demonstration, the bench was sloped from 0 to 10 cm above the solution over a distance of 90 cm. Corn, squash, soybean, fescue, and marigold seed were directly sown to either 9- or 15-cm pots and then placed on the CWT sloped bench at five vertical distances above the solution. Weekly, students observed plant growth and at the end of 8 weeks evaluated root and shoot growth. For all species, plant growth was indirectly related to the distance above the nutrient solution. Plants at near 0 water potential were much larger than those grown 8 to 10 cm above the solution.

Free access