Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: T.B. Sutton x
Clear All Modify Search

Apple sooty blotch (SB) is a disease complex caused by Gloeodes pomigina (Schw.) Colby, Leptodontidium sp. and other fungi. This study was undertaken to determine if G. pomigena and Leptodontidium sp. utilize some portion of the apple epicuticular wax as a carbon source for growth. Two isolates of G. pomigena and two of Leptodontidium sp. were used. Isolates were cultured on water agar coated with a thin layer of either nonacosane, ursolic acid, or complete apple wax and an uncoated control. Radial colony growth over a 30-day period was used to assess growth. Preliminary results suggest that G. pomigena differs from Leptodontidium sp. in carbon source preference. Gloeodes colonies were larger when ursolic acid and apple wax were used as a carbon source compared to nonacosane. Leptodontidium isolates grew best on apple wax. Also, growth was greater on nonacosane than ursolic acid. results from laboratory studies were compared to SB severity (percent surface area covered) in the orchard on cultivars of apples where the wax composition was determined. Although fungal genera were not detailed in the orchard, SB severity was positively correlated with the concentration of ursolic acid (r2=0.69) and nonacosane (r2=0.34).

Free access

Mature-green `Grande Naine' bananas from Costa Rica, Mexico, Ecuador, and Guatemala were harvested in June, Sept., and Dec. 1993 and Mar. 1994. Fruit were treated with ethylene and held at 17C and 80% to 90% relative humidity until they reached color 6 of the standard color scale. Guatemalan bananas had the highest respiration rate, followed by Costa Rican, Mexican, and Ecuadoran fruit. Peel color, ethylene production, and soluble solids content did not differ among the countries. Measurements made at arrival in the United States had a low correlation with days to reach color 5. Prediction equations showed significant linear relationships for most variables; however, correlations were very low. The highest coefficient of determination was observed with respiration rate (r 2 = 0.289). Maximum R 2 (0.342) was determined using CO2, C2H4, pH, and soluble solids in the model. pH and soluble solids were good variables to determine the physiological stage of the fruit, and they also detected ripening changes earlier than peel color or firmness.

Free access