Search Results

You are looking at 1 - 10 of 15 items for :

  • Author or Editor: T. Phillips x
  • HortScience x
Clear All Modify Search

Interior surfaces of tube trays were painted with white exterior acrylic latex paint and white interior latex paint containing 0, 50, or 300 gm/1 copper sulfate. Germinated Quercus acutissima seedlings were used to study chemical root pruning effects and subsequent root regeneration. After 16 weeks, only 0.73 roots per seedling continued growth after being deflected by the tubewall painted with 100gm/1 compared with 3.67 for the control. Fibrous roots were reduced when in contact with cu treated surfaces. Height and caliper were not affected at any treatment level. Three weeks after transplanting to larger untreated containers, height and caliper were still unaffected by any cu treatment. Time required for regeneration of new roots was not affected by cu treatments.

Free access

Previous research at this facility has shown that copper sulfate, when incorporated with latex paint and applied to the interior surfaces of tube trays, was effective in chemically root pruning Quercus acutissima seedlings. Only 20% of deflected roots continued to grow after contacting Cu treated tube walls compared to controls. Treated plants showed a reduction of fibrous roots on the plug surface. Height and caliper were not affected by Cu treatments during chemical root pruning in the tube tray. Time required for regeneration of new roots was not affected by Cu treatments. Seedlings from each treatment were planted and grown two seasons under field conditions to observe effects on growth and root regeneration. No treatment effects occurred for height or caliper. Oak seedlings chemically root pruned with Cu exhibited more lateral growth and branching than control plants.

Free access
Authors: and

Students in plant science courses have difficulty thoroughly understanding the effect of water stress on net photosynthesis and its consequences—reduced plant growth, productivity, quality, and profit. A laboratory demonstration utilizing a controlled water table irrigation system (CWT) provides a nearly constant plant water potential. Pots are placed on a capillary mat with one end suspended in a trough with nutrient solution. The vertical distance from the solution surface to the pot bottom determines the water potential; the water potential is 0 when the pot bottom is at the same level as the nutrient solution. The greater the vertical distance from solution to the pot bottom, the lower the water potential. For this demonstration, the bench was sloped from 0 to 10 cm above the solution over a distance of 90 cm. Corn, squash, soybean, fescue, and marigold seed were directly sown to either 9- or 15-cm pots and then placed on the CWT sloped bench at five vertical distances above the solution. Weekly, students observed plant growth and at the end of 8 weeks evaluated root and shoot growth. For all species, plant growth was indirectly related to the distance above the nutrient solution. Plants at near 0 water potential were much larger than those grown 8 to 10 cm above the solution.

Free access
Authors: and

In class demonstrations, it is almost impossible to maintain the same water: air ratio in growing media. If some treatments result in greater plant growth than others, treatment effects on plant growth are often confounded with the effect of water: air ratio in the growing media. In a laboratory demonstration of nutrient deficiencies symptoms in plants, a controlled water table irrigation system maintained a constant water: air ratio in the growing media regardless of the nutrient deficiency affect on plant growth. The modified capillary mat irrigation system consists of one mat edge extending over the edge of the bench into a narrow trough on the side of the bench. The nutrient solution level in the trough is controlled by a liquid level controller, so it is at a fixed distance below the bench surface. The nutrient solution is drawn upward by capillarity to the bench surface and then moves by capillarity over the bench. The system automatically maintains a constant air: water ratio in the growing media. A standard Hogland solution was modified to demonstrate deficiencies in N, P, K, Mg, Ca, Cu, Fe, and Zn on corn, squash, radish, soybeans, and marigold. Seeds were germinated and grown to maturity in either a 10- or 15-cm pot. Students set up the demonstration, were provided instruction in preparing solutions, regularly observed plant growth, and answered questions at the end of the study about differences in plant growth observed. However, possibly because low concentrations of some minor elements in the capillary mat, Zn deficiency was not observed and other elements, although resulting in poor growth compared to the control, did not show severe deficiency symptoms.

Free access

Since 1988, efforts have been underway to establish a nursery research station in McMinnville, Warren County, Tennessee. Approximately 80 acres of farm property adjacent to the Collins scenic river has been conveyed to Tennessee State University (TSU) for this purpose. Scientists at TSU, Tennessee Technological University, University of Tennessee, and USDA's National Arboretum and Shade Tree Laboratory have cooperated in obtaining grant funds via the Capacity Building Grants Program to initiate a plant evaluation and introduction program. Replicated trials of woody genera include Acer, Castanea, Cornus, Lagerstroemia, Quercus, Syringa, Ulmus. Herbaceous genera are Echinacea, Hemerocallis, Hosta. Plantings will be made over a three year period as infrastructure at the new station develops. Additional grant proposals have been recently submitted.

Free access

Efforts have been underway since 1988 to establish a nursery research station in McMinnville, TN. Approximately 80 acres of farm property has been conveyed to Tennessee State University (TSU) for this purpose. Scientists at TSU, Tennessee Technological University, University of Tennessee, and USDA's National Arboretum and Shade Tree Laboratory have cooperated in obtaining funding via the Capacity Building Grants Program to initiate a plant evaluation and introduction program at the new station. Initial trials of woody genera include Acer, Castanea, Cornus, Lagerstroemia, Quercus, Syringa, and Ulmus. Herbaceous genera are Echinacea, Hemerocallis, and Hosta. Plantings will be made over a three year period as infrastructure at the new station develops. Complementary grant proposals have been recently submitted. Design, funding and support of all Tennessee introduction and evaluation programs will be discussed.

Free access

The Tennessee State University Nursery Crops Research Station is located at McMinnville in Middle Tennessee. This is a major nursery production area with a USDA Zone 6b climate and 134 cm mean annual rainfall.

Approximately 4 ha has been established, with drip irrigation, for comparative evaluation trials of Acer, Cornus, Lagerstroemia, Quercus, Syringa and Ulmus. Plants are being evaluated for: 1) landscape performance - growth, drought tolerance, heat/cold tolerance, 2)ornamental characteristics - bloom. leafcolor, fall color, shape, 3) resistance to disease and pests, and 4) adaptability for production under commercial conditions. Acquisition of plant materials began in 1992 with the collection and planting of more than 120 spp/cv of Acer. Plantings in 1994 consisted of Cornus = 100 spp/cv; Lagerstroemia = 70 spp/cv; Quercus ≈ 90 spp/cv; Syringa ≈ 50 spp/cv and Ulmus ≈ 30 spp/cv.

The long term objective is the establishment of a comprehensive evaluation program for the nursery industry of Tennessee.

Free access

The genus Allium is distributed worldwide and includes about 80 North American species, with at least 13 occurring in Utah. Our study focuses on the population dynamics of three Allium species native to Utah; Allium acuminatum, A. brandegei, and A. passeyi. In conjunction with our studies of life history, growth characteristics, demographics, and habitat, we are interested in determining the levels of genetic variation in these species. This study examines amplified fragment length polymorphism (AFLP) within and among five Allium acuminatum, four A. brandegei, and three A. passeyi populations native to Utah. These species have contrasting abundance and distribution. The study populations were selected along an elevation gradient to represent within-species habitat differences. About 10–20 plants from each of the 12 populations were genotyped using six AFLP primer combinations, which detect DNA variation within and among all three species. These data will be used to compare levels of genetic variation and isolation among populations and species.

Free access

Three wild onion species native to the intermountain west in the United States—Allium acuminatum, A. brandegei, and A. passeyi—show horticultural potential, but little is known about patterns of genetic diversity among localized populations and geographical regions. We examined amplified fragment length polymorphisms (AFLP) within and among five Allium acuminatum, four A. brandegei, and three A. passeyi collection sites in Utah. These three congeners with contrasting abundance and distribution patterns provide an opportunity to investigate the role of geographic distance, altitude, and rarity in patterns of genetic divergence. The collection sites were selected along an altitudinal gradient to reflect ecogeographic variation. Individual plants from each of the 12 sites were genotyped using six AFLP primer combinations detecting DNA variation within and among all three species. Genetic differences between species were high enough to render comparisons among species impractical, so each species was analyzed separately for differences between populations and variability within populations. Similarity coefficients were significantly greater within collection sites versus among collection sites indicating divergence between populations. Within-population genetic diversity was not correlated with elevation for any of the three species. Analysis of molecular variance revealed that 66% (A. acuminatum), 83% (A. passeyi), and 64% (A. brandegei) of observed variation is found within populations. Genetic divergence among populations (ФST) was higher in the widely distributed species, suggesting that interpopulation gene flow may be negatively correlated with range size. Allium acuminatum and A. brandegei individuals cluster into groups corresponding strictly to collection sites based on neighbor-joining analysis of the total number of DNA polymorphisms between individual plants. Allium passeyi populations, however, had less overall genetic variation between populations. Genetic isolation by distance appeared responsible for much of the variability among populations, although there was one notable exception showing significant differences between two geographically close populations in A. acuminatum.

Free access

One-half (18 g·ha-1 a.i.) and three-fourths (27 g·ha-1 a.i.) rates of halosulfuron (Manage®, MON 12051) were combined with adjuvants and evaluated for effectiveness in controlling purple nutsedge (Cyperus rotundus L.) and for phytotoxic responses exhibited by two kinds of container-grown ornamental plants. Adjuvants included X-77®, Scoil®, Sun-It II®, Action “99”®, and Agri-Dex®. By 8 weeks after treatment (WAT), halosulfuron combined with X-77®, Agri-Dex®, or Action “99”® at the lower halosulfuron rate provided <90% purple nutsedge suppression. In contrast, Sun-It II® provided 100% control when combined with the higher halosulfuron rate. Nutsedge control persisted into the following growing season and halosulfuron combined with either Scoil® or Sun-It II® provided >97% suppression of nutsedge tuber production. Growth of liriope [Liriope muscari (Decne.) Bailey `Big Blue'] was not inhibited by Scoil® or Sun-It II® adjuvants in combination with the low rate of halosulfuron. However, regardless of the rate of halosulfuron or adjuvant used, initial foliar chlorosis was observed in both daylily (Hemerocallis sp. L. `Stella d'Oro') and liriope. All liriope receiving halosulfuron with X-77®, Scoil®, or Sun-It II® adjuvants recovered normal foliage by 8 WAT. By contrast, at 8 WAT some daylily still maintained a degree of foliar discoloration. In addition to chlorosis, all treatments reduced flower number in daylilies. The number of flower scapes produced by liriope was not affected by halosulfuron when in combination with either Sun-It II® or Scoil®. The high rate of halosulfuron combined with X-77® or Action “99”® improved control of purple nutsedge. However, this rate inhibited growth of both species, daylily flower numbers, and scape numbers of liriope, regardless of adjuvant. Chemical names used: halosulfuron (Manage®, MON 12051, methyl 5-{[(4,6-dimethyl-2-pyrimidinyl) amino] carbonyl-aminosulfonyl}-3-chloro-1-methyl-1-H-pyrozole-4-carboxylate); proprietary blends of 100% methylated seed oil (Scoil® and Sun-It II®); proprietary blend of 99% polyalkyleneoxide modified heptamethyl trisiloxane and nonionic surfactants (Action “99”®); alkylarylpolyoxyethylene, alkylpolyoxyethelene, fatty acids, glycols, dimethylpolysiloxane, and isopropanol (X-77®); proprietary blend of 83% paraffin-based petroleum oil, with 17% polyoxyethylate polyol fatty acid ester and polyol fatty ester as nonionic surfactants (Agri-Dex®)

Free access