Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Sue Knight x
- HortScience x
Pecans, because of their high oil and polyunsaturated fatty acid content, have a relatively short shelf life due to oxidation of the oil. Using a nondestructive supercritical CO2 extraction process, we evaluated oil reduction as a means for pecan shelf life extension. Pecan halves were extracted under sufficient conditions for 22% and 28% oil reduction, and then stored in modified-atmosphere packages with 21% O2 at 22C for up to 37 weeks. Kernel hexanal content and sensory rancid flavor were monitored at various times throughout the study. The resistance of oils to oxidation, indicated by the onset of sustained hexanal production, was increased from 6 weeks for full-oil halves, to 18 weeks for 22% reduced-oil halves, to 22 weeks for 28% reduced-oil halves. Objectionable rancid flavor was detected by the 22nd week of storage for full-oil pecans. Reduced-oil pecans never developed objectionable rancid flavor. Supported by USDA grant 93-341508409, OCAST grant AR4-044, and the Oklahoma Agricultural Experiment Station.
Shelf life is a major problem in the marketing of pecans, particularly at the retail level. A procedure to extend the shelf life of pecans was described. The full-oil and supercritical carbon dioxide extracted (22% and 27% reduced-oil) native pecan kernels packaged in standard air mixture (21% O2, 79% N2), stored for up to 37 weeks at 25 °C and 55% RH, were subjected to hexanal analysis, sensory analysis, and determination of lipid class changes, that occur as the pecans age. Hexanal concentration of reduced-oil pecans was negligible throughout the storage, while full-oil pecans reached excessive levels by 22 weeks. Hexanal analysis was in agreement with the sensory scores. Free fatty acid lipid class was selectively extracted during the partial oil extraction process. Reduction in free fatty acids, and an overall reduction in lipid content on a per kernel basis, decreased the sites for oxidative deterioration and contributed to enhanced shelf-life of pecans. Work was supported by OCAST grant AR4-044 and the Oklahoma Agricultural Experiment Station.