Search Results
Iris hollandica `Blue Magic' was treated with deionazed water as a control, 3% sucrose (Suc), 3% sucrose plus 0.4 mm silver thiosulphate (Suc+STS), 3% sucrose plus 200 mg·L-1 8-hydroxyquinoline sulphate (Suc+HQS) and 3% sucrose plus 100 mg·L-1 benzyl amino-purine (Suc+BA) for 4hrs and then transferred to tap water. The vase life treated with Suc+BA was extended 4 days longer than that of control. The treatment Suc+STS or Suc+HQS did not improve vase life. The amounts of water uptake and transpiration by all treatments decreased after harvest, but those values were higher in cut iris treated with Suc+BA than in those with control. Cut flowers treated with by Suc+BA markedly improved water balance, comparing with control which was quickly changed to minus value. Anthocyanin content in petals of cut flower treated with Suc+BA was 3.5 fold higher than that of control. The treatment by Suc+BA delayed discoloration in petals and senescence of cut Iris. Peroxidase (POD) activities of all treatments were reached maximum at 4th day after treatment and decreased thereafter. POD activity was highest when the cut iris was treated with Suc+BA. These results show that the use of Suc+BA is most effective treatment for improving the vase life and quality of cut Iris flowers.
This study was conducted to overcome the problems occurring in soil cultured Sandersonia, such as secondary tuber formation, tuber russeting, browning and surface cracking. For the tuber production, soilless culture medium compositions (peatmoss, perlite, cocopeat) and harvesting times [4, 6, 8, 10, and 12 weeks after flowering time (WAF)] were compared. The mother tubers were planted and grown in a plastic box (40 × 60 × 23 cm) under a PE film house with shading in summer season. The tuber number and weight were higher in peatmoss-based media of peatmoss, 1 peatmoss: 1 perlite, and 2 peatmoss: 1 perlite (by volume) than in the other media. Particularly, the plant height and the numbers of leaf and flower were also higher. The contents of total nitrogen and phosphorus in leaves were lower when the tubers were grown in perlite. Leaf area index per plant reached the maximum at 8 WAF and decreased thereafter. The optimal harvesting time for tuber production was 8-10 WAF.
This experiment was carried out to determine correct applications of GA3 for the production of cut flowers of Zantedeschia albomaculata cv. Black Magic in highlands. Tubers were treated with GA3 in concentrations of 0, 100, and 200 mg·L-1. ABA contents in the tubers and roots were twice as high (20∼25 pmol/mL) in the control as in GA3-treated tubers and roots. ABA content in roots increased with increasing GA3 concentration. Growth of the calla was investigated according to the tuber hardness (3.3, 6.0 kg·cm-2), GA3 concentrations (0, 100, 200 mg·L-1), and GA3 treatment duration (24 h, 12 h, and 30 min before planting). Tubers with higher tuber hardness were strong against soft rot, regardless of the GA3 concentrations and treatment durations. Tubers with lower tuber hardness showed over 90% soft rot occurrence when treated with 200 mg·L-1 GA3 for 24 h before planting. However, soft rot did not occur when treatment with 200 mg·L-1 GA3 was used for 12 h before planting.
We aimed to develop a more accurate transpiration model for cucumber (Cucumis sativus L.) plants to optimize irrigation and nutrient usage in soilless greenhouse cultivation. Accurate modeling of transpiration in greenhouse-grown cucumbers is crucial for effective cultivation practices. Existing models have limitations that hinder their applicability. Therefore, this research focused on refining the modeling approach to address these limitations. To achieve this, a comprehensive methodology was employed. The actual transpiration rates of three cucumber plants were measured using a load cell, enabling crop fresh weight changes to be calculated. The transpiration model was developed by making specific corrections to the formula derived from the Penman-Monteith equation. In addition, the study investigated the relationship between transpiration rate and solar radiation (Rad) and vapor pressure deficit (VPD), identifying a nonlinear association between these variables. The transpiration model was adjusted to account for these nonlinear relationships and compensate for Rad and VPD. Comparative analysis between the actual and estimated transpiration rates demonstrated that the developed cucumber transpiration model reduced overestimation by 23.69%. Furthermore, the model exhibited higher coefficients of determination and root mean square error (RMSE) values than existing models, suggesting its superior accuracy in predicting transpiration rates. Implementing the transpiration model-based irrigation method demonstrated the potential for ∼21% nutrient savings compared with conventional irrigation practices. This finding highlights the practical applications of the developed model—accounting for a nonlinearity of Rad and VPD—in optimizing irrigation practices for greenhouse cucumber cultivation.