Search Results

You are looking at 1 - 10 of 10 items for :

  • Author or Editor: Stephen M. Southwick x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

We evaluated the potential of microsatellite markers for use in Citrus genome analysis. Microsatellite loci were identified by screening enriched and nonenriched libraries developed from `Washington Navel' Citrus. Microsatellite-containing clones were sequenced and 26 specific PCR primers were selected for cross-species amplification and identification of cultivars/clones in Citrus. After an enrichment procedure, on average 69.9% of clones contained dinucleotide repeats (CA)n and (CT)n, in contrast to <25% of the clones that were identified as positive in hybridization screening of a nonenriched library. A library enriched for trinucleotide (CTT)n contained <15% of the clones with (CTT)n repeats. Repeat length for most of the dinucleotide microsatellites was in the range of 10 to 30 units. We observed that enrichment procedure pulled out more of the (CA)n repeats than (CT)n repeats from the Citrus genome. All microsatellites were polymorphic except one. No correlation was observed between the number of alleles and the number of microsatellite repeats. In total, 118 putative alleles were detected using 26 primer pairs. The number of putative alleles per primer pair ranged from one to nine with an average of 4.5. Microsatellite markers discriminated sweet oranges [Citrus sinensis (L.) osb], mandarin (Citrus reticulata Blanco), grapefruit (Citrus paradisi Macf.), lemon [Citrus limon (L.) Burm.f.], and citrange (hybrids of trifoliate orange and sweet orange), at the species level, but individual cultivars/clones within sweet oranges, mandarins and grapefruit known to have evolved by somatic mutation remained undistinguishable. Since these microsatellite markers were conserved within different Citrus species, they could be used for linkage mapping, evolutionary and taxonomic study in Citrus.

Free access

A genomic DNA library enriched for dinucleotide (CT)n and (CA)n and trinucleotide (CTT)n microsatellite motifs has been developed from `Kerman' pistachio (Pistacia vera L.). The enrichment method based on magnetic or biotin capture of repetitive sequences from restricted genomic DNA revealed an abundance of simple sequence repeats (SSRs) in the pistachio genome which were used for marker development. After an enrichment protocol, about 64% of the clones contained (CT)n repeats while 59% contained (CA)n for CT and CA enriched libraries, respectively. In the (CT)n enriched library, compound sequences were 45% while for (CA)n it was 13.5%. In both dinucleotide enriched libraries, about 80% of the clones having microsatellites have a repeat length in the range of 10 to 30 units. A library enriched for trinucleotide (CTT)n contained <19% of the clones with (CTT)n repeats. Of the clones that contained microsatellites, 62% had sufficient flanking sequence for primer design. An initial set of 25 pairs of primers was designed, out of which 14 pairs amplified cleanly and produced an easily interpretable PCR product in the commercially important American, Iranian, Turkish, and Syrian pistachio cultivars. The efficient DNA extraction method developed for pistachio kernels and shells (roasted and nonroasted) yielded DNA of sufficient quality to use PCR to create DNA fingerprints. In total, 46 alleles were identified by 14 primer pairs and a dendrogram was constructed on the basis of that information. The SSR markers distinguished most of the tested cultivars from their unique DNA fingerprint. An UPGMA cluster analysis placed most of the Iranian samples in one group while the Syrian samples were the most diverse and did not constitute a single distinct group. The maximum number of cultivar specific markers were found in `Kerman'(4), the current industry standard in the United States, and the Syrian cultivar Jalab (5). The technique of using extracted DNA from pistachio kernal or shell coupled with the appropriate marker system developed here, can be used for analyses and measurement of trueness to type.

Free access

Simple sequence repeat (SSR) and sequence related amplified polymorphism (SRAP) molecular markers were evaluated for detecting intraspecific variation in 38 commercially important peach and nectarine (Prunus persica) cultivars. Out of the 20 SSR primer pairs 17 were previously developed in sweet cherry and three in peach. The number of putative alleles revealed by SSR primer pairs ranged from one to five showing a low level of genetic variability among these cultivars. The average number of alleles per locus was 2.2. About 76% of cherry primers produced amplification products in peach and nectarine, showing a congeneric relationship within Prunus species. Only nine cultivars out of the 38 cultivars could be uniquely identified by the SSR markers. For SRAP, the number of fragments produced was highly variable, ranging from 10 to 33 with an average of 21.8 per primer combination. Ten primer combinations resulted in 49 polymorphic fragments in this closely related set of peaches and nectarines. Thirty out of the 38 peach and nectarine cultivars were identified by unique SRAP fingerprints. UPGMA Cluster analysis based on the SSR and SRAP polymorphic fragments was performed; the relationships inferred are discussed with reference to the pomological characteristics and pedigree of these cultivars. The results indicated that SSR and SRAP markers can be used to distinguish the genetically very close peach and nectarine cultivars as a complement to traditional pomological studies. However, for fingerprinting, SRAP markers appear to be much more effective, quicker and less expensive to develop than are SSR markers.

Free access

Abstract

Whole-tree sprays of gibberellic acid (GA) plus calcium dihydrophosphate Ca(H2PO4)2 increased fruit set of navel orange [Citrus sinensis (L.) Osb.] during 1979 and 1980. Gibberellic acid alone or a combination with Ca(H2PO4)2 or 6-benzylamino purine (BA) increased fruit set in 1980. Benzylamino purine did not increase fruit set or the fruit-setting effectiveness of GA. Calcium dihydrophosphate increased fruit set for approximately 5.5 weeks in 1980 even though leaves did not show signs of calcium deficiency. However, no increase in fruit set was observed 8.5 weeks after application. Fruit sprayed with GA were smaller than untreated fruit initially; however, no size differences were noted 8.5 weeks after full bloom.

Open Access

Abstract

NAA at 10–3 m concentration plus 2% dimethylsulfoxide (DMSO) in lanolin paste, applied to apices of unpollinated strawberry (Fragaria × ananassa Duch. ‘Ozark Beauty’) flower receptacles, promoted growth and receptacle elongation resulting in full-sized fruit. Movement of [14C]NAA occurred predominantly in a basipetal direction from the treated apex to the receptacle base. Growth occurred only at the site of application when NAA was applied to the receptacle base or longitudinal half. Acropetal or lateral movement of [14C]NAA in receptacles was minimal. Movement of [14C]NAA out of receptacles and into pedicels was basipetal in nature and was slower than that noted within the receptacles. These data demonstrate that polar auxin movement in strawberry receptacles appears to promote uniform growth at some distance from the point of application. Chemical names used: 1-naphthaleneacetic acid (NAA); indole-3-acetic acid (IAA); and 2,3,5-triiodobenzoic acid (TIBA).

Open Access

Simple sequence repeats (SSRs) and amplified fragment-length polymorphisms (AFLPs) were used to evaluate sweet cherry (Prunus avium L.) cultivars using quality DNA extracted from fruit flesh and leaves. SSR markers were developed from a phage library using genomic DNA of the sweet cherry cultivar Valerij Tschkalov. Microsatellite containing clones were sequenced and 15 specific PCR primers were selected for identification of cultivars in sweet cherry and for cross-species amplification in Prunus. In total, 48 alleles were detected by 15 SSR primer pairs, with an average of 3.2 putative alleles per primer combination. The number of putative alleles ranged from one to five in the tested cherry cultivars. Forty polymorphic fragments were scored in the tested cherry cultivars by 15 SSRs. All sweet cherry cultivars were identified by SSRs from their unique fingerprints. We also demonstrated that the technique of using DNA from fruit flesh for analysis can be used to maintain product purity in the market place by comparing DNA fingerprints from 12 samples of `Bing' fruit collected from different grocery stores in the United States to that of a standard `Bing' cultivar. Results indicated that, with one exception, all `Bing'samples were similar to the standard. Amplification of more than 80% of the sweet cherry primer pairs in plum (P. salicina), apricot (P. armeniaca) and peach (P. persica L.) showed a congeneric relationship within Prunus species. A total of 63 (21%) polymorphic fragments were recorded in 15 sweet cherry cultivars using four EcoRI-MseI AFLP primer combinations. AFLP markers generated unique fingerprints for all sweet cherry cultivars. SSRs and AFLP polymorphic fragments were used to calculate a similarity matrix and to perform UPGMA cluster analysis. Most of the cultivars were grouped according to their pedigree. The SSR and AFLP molecular markers can be used for the grouping and identification of sweet cherry cultivars as a complement to pomological studies. The new SSRs developed here could be used in cherry as well as in other Prunus species for linkage mapping, evolutionary and taxonomic study.

Free access

Hand thinning fruit is required every season to ensure large fruit size of `Loadel' cling peach [Prunus persica (L.) Batsch] in California. Chemical thinning may lower costs of hand thinning. A surfactant, Armothin {[N,N-bis 2-(omega-hydroxypolyoxyethylene/polyoxypropylene) ethyl alkylamine]; AKZO-Nobel, Chicago; AR}, was sprayed at 80% of full bloom (FB), FB, and FB + 3 days. The spray volume was 935 liters/ha. Concentrations of AR were 1%, 3%, and 5% (v/v). An early hand thinning in late April, a normal hand thinning at 13 days before standard reference date (early May), and a nonthinned control were compared to bloom-thinned trees for set, yield, and fruit quality. AR resulted in no damage to fruit; however, slight leaf yellowing and burn and small shoot dieback were seen at the 5% concentration. Fruit set, and therefore, the number of fruit that had to be hand thinned, were reduced with 3% AR applied at 80% FB and 5% AR applied at all bloom phenophases (stages of bloom development). Thinning time was reduced by 37% (5% AR applied at 80% FB), 28% (5% applied at FB), and by 20% (3% applied at 80% of FB), compared to the normally hand-thinned control. Although AR resulted in early size (cross suture diameter and weight) advantages, at harvest there were no significant differences in fruit size among all AR treatments and the normally hand-thinned control. Total and salable yields of AR treatments and the normally hand-thinned control were equal. Armothin shows promise for chemical thinning of peach when used as a bloom thinner.

Free access

Whole-tree sprays of Release LC [predominantly gibberellic acid] (GA,) were applied in a commercial peach [Prunus perisca (L.) Batsch.] orchard in the California Central Valley on three dates from mid-June (about 90 days after full bloom = 28 days before harvest) to late July (14 days postharvest) 1993 at 50, 75, 100, and 120 mg·liter-1. Gibberellin (GA) reduced the number of flowers differentiated in 1993, thereby reducing fruit density in 1994, when sprays were applied by early July 1993. Sprays in late July did not reduce flowering and fruiting density in the following year. In 1994, there were fewer fruit located on the proximal third of the shoot after GA sprays of 75,100, and 120 mg-liter' applied on 15 June compared to hand-thinned controls, and reduction was linear with increase in GA rate. Fruit numbers in the middle and distal sections of shoots were reduced by all 15 June and some 9 July GA sprays, with fewer fruit as concentration increased. However, the distribution of fruit within shoot sections, after GA treatments during floral differentiation, expressed as a percentage of the total number of fruit along fruiting shoots, showed even fruiting compared with hand thinning. Due to reduced flowering in response to GA treatments in June and early July 1993, the hand-thinning requirement was significantly reduced, with no thinning required in 1994 from 15 June 1993 GA sprays. All sprays applied in early July resulted in 40% to 60% fewer fruit removed during thinning than the nontreated controls. Sprays in late July were ineffective. Sprays of GA applied in mid-June at 50,75, 100, and 120 mg·liter and sprays of 120 mg·liter-1 GA applied in early July (4 days preharvest) increased the firmness of `Loadel' cling peach (about 26% improvement in June sprays) in 1993. The salable yield of fruit (after removal of the undersized fruit) was the same on hand thinned and on non-hand thinned trees treated with GA on 15 June at 50 mg·liter-1. The salable yield of fruit was increased by GA sprays of 50 and 75 mg·liter applied on 9 July 1993 compared to controls. There were no differences in fruit size (by weight or diameter) among the aforementioned treatments and hand thinning. GA sprays of 75,100, and 120 mg-liter' applied on 15 June 1993 tended to reduce salable yield, but fruit size increased with decreased yield. Based on the results obtained in 1993 and 1994, we believe that Release LC has good potential for chemically thinning peaches in California.

Free access

Abstract

Species of Alternaria and Gloeosporium were most often isolated from fruit with blossom-end yellowing (BEY), a disorder associated with summer fruit drop of navel orange [Citrus sinensis (L.) Osbeck]. Fruit inoculated with pure cultures of these fungi did not develop BEY; however, wounded fruit which were inoculated with fungi produced higher levels of ethylene and more extensive BEY than wounded, noninoculated fruit. Fruit with BEY produced higher amounts of ethylene than symptomless fruit. The methoxy analog of rhizobitoxine (methoxyvinylglycine) did not reduce ethylene levels, and silver nitrate increased ethylene production from fruit with BEY. Ethylene and fungi are associated with BEY of navel orange but do not appear to be causal factors.

Open Access

The sensitivity of French prune (Prunus domestica L. syn. `Petite d'Agen') to water deprivation at various fruit growth stages was studied over 3 years in a drip-irrigated orchard. The soil was a poorly drained Rocklin fine sandy loam with a hardpan that varied from 4.75 to I m from the surface at the northern end of the orchard (shallow soil condition) to no hardpan apparent to 2 m below the surface at the southern end of the orchard (deep soil condition). Water deprivation during a) the first exponential phase of fruit growth or stage I, b) lag phase of fruit growth or stage II, c) first half of stage II, d) second half of stage II, e) second exponential fruit growth phase or stage III, and f) postharvest was compared to a fully watered control. Water deprivation caused the most severe reduction in tree water status when it was imposed over longer periods of time and during periods of high evaporative demand and also had mm-e severe effects under shallow soil conditions. Compared to the control treatment, deprivation during all of stage II (the most severe deprivation treatment) was associated with increased Ilowering, reduced fruit hydration ratio, and smaller fruit size under all soil conditions. Under deep soil conditions, deprivation during all of stage II resulted in increased return bloom, which was reflected in higher fruit loads and dry t-ha-' fruit yield. However, under shallow soil conditions, even though return bloom was increased with this treatment, fruit loads and dry t·ha-1 fruit yields were the lowest of all treatments. These differences in treatment effects in shallow vs. deep soil conditions were most likely the result of increased fruit drop, which occurred under shallow soil conditions as a result of rapid onset and increased severity ofstress. Treatments that had parallel effects in shallow and deep soil conditions resulted in statistically significant overall treatment effects, while those that had opposing effects in shallow vs. deep soil conditions did not show significant overall treatment effects. Substantial alternate hearing occurred, and, in general, dry fruit yields above ≈9 dry t·ha-1 resulted in a decrease in fruit load the following year, while loads below this value showed a subsequent increase. Based on a separate estimate of the theoretically stable value for each treatment, all deprivation treatments resulted in a higher sustainable fruit load compared to the fully irrigated control. This suggests that, for the purpose of prune fruit production, there may be an optimal level of tree water stress.

Free access