Search Results

You are looking at 1 - 2 of 2 items for

  • Author or Editor: Shuhong Zhang x
Clear All Modify Search

Potassium (K) is a critical plant nutrient that determines quality in a myriad of crops and increases production yields. However, excessive application of various types of K fertilizers can decrease both the food quality and yields, which translates as economic losses and food safety issues. The objectives of this study were to 1) elucidate the impacts of different application rates of various K fertilizers on garlic, with the aim to identify the optimal and most economical K fertilizer dosage and 2) compare the effects of applying two common K fertilizers (KCl and K2SO4) on garlic, to determine the optimal combination. From 2018 to 2020, we utilized two distinct K-fertilized fields to conduct our experiments. The results revealed optimal KCl fertilization increased the biomass and vegetation index in garlic, and promoted the transfer of nitrogen, phosphorus, and potassium nutrients from the stem and leaf to bulb, thereby increasing bulb production. The application of KCl fertilizer increased the number of cloves, the diameters of the cloves and bulbs, and reduced variations in bulb size. In addition, the application of KCl fertilizer improved the nutritional quality (Vitamin C, soluble sugar, soluble protein, and allicin) of the garlic and reduced the accumulation of nitrate. However, excessive KCl fertilizer cause decreased yields, appearance traits, and nutritional quality. Applying the same rate of K fertilizer in the form of K2SO4 in isolation increased the garlic yield by only 0.1% to 22.5% when compared with KCl fertilizer. However, the results were not always significant. In this study, the highest yields, appearance traits, and nutritional quality were achieved with the ratio of K2SO4: KCl = 3:1. Consequently, to ensure the highest economic value (considering the market prices of K fertilizer, garlic sprouts, and bulbs), the authors recommend a K fertilizer rate of 252.5 kg·ha−1 K2O, with K2SO4 accounting for 61.6% for garlic production in field.

Open Access

Traditional methods of garlic fertilization involve large amounts of balanced fertilizer with equal proportions of N, P, and K, leading to nutrient imbalances, reduced yield and nutritional quality, and elevated risk of environmental pollution. This study for the first time measured garlic nutrient absorption and mineral elements status in garlic fields. In addition, a garlic-specific fertilizer formula and recommended rate were designed and applied in multiple garlic fields during the 2019–21 growing season. We assessed the performance of garlic-specific fertilizer in terms of yield, quality, and nutrient utilization efficiency. We showed that garlic prefers to absorb N and K, and its absorption of P was much lower. Deficiencies in Cl, Mn, S, and Fe are found in 98.7%, 56.1%, 22.8%, and 11.9% of garlic fields. Compared with farmer fertilization, the garlic-specific fertilizers increased sprout yield by 12.9% to 30.5%, bulb yield by 11.0% to 33.5%, and net income by 18.2% to 45.6%. Furthermore, it improved the nutritional quality [vitamin C (Vc), soluble sugar (SS), and soluble protein] of the garlic and reduced the accumulation of nitrate. The formula of special fertilizer was more in line with the law of garlic nutrient absorption, increasing the nutrient utilization effect, reducing the environmental risks. Application of specific fertilizer increased N, P, and K partial productivity by 26.6% to 50.1%, 82.6% to 116.5%, and 54.6% to 83.3%, respectively. These results suggest that replacing balanced fertilizers in the garlic market with garlic-specific fertilizers can improve garlic farmers' incomes and soil health.

Open Access