Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Shao Hua Li x
- Journal of the American Society for Horticultural Science x
The most obvious effects of a low leaf:fruit (LF) ratio [two leaves for one cluster per shoot (LF2)] on grape (Vitis vinifera) berries are suppressed anthocyanin biosynthesis in the berry skin, decreased berry weight and soluble solids concentration, and increased titratable acidity. In this study, proteins isolated from berry skins grown under low and high LF ratio conditions, LF2 and LF12, respectively, were characterized by two-dimensional gel electrophoresis coupled to mass spectrometry. A survey of ≈600 to 700 spots from berry skin yielded 77 proteins with differential expression between LF12 and LF2 treatments. Of these, the 59 proteins that were identified consisted of 47 proteins that were down-regulated and 12 that were up-regulated under LF2 conditions compared with LF12 conditions. Most proteins involved in metabolism, energy, transcription, protein synthesis, binding function, signal transduction, and cell defense were down-regulated in LF2 berries, whereas two important enzymes of anthocyanin biosynthesis, chalcone synthase and dihydroflavonol reductase, were not detected. Only a few proteins (e.g., two heat shock proteins related to protein fate and nutrient reservoir storage protein) were found to be up-regulated in LF2 berries. This suggested that, with the exception of secondary metabolism, many proteomic events may have an effect on anthocyanin synthesis in the skins responding to LF.
Half or whole root systems of micropropagated `Gala' apple (Malus ×domestica Borkh.) plants were subjected to drought stress by regulating the osmotic potential of the nutrient solution using polyethylene glycol (20% w/v) to investigate the effect of root drying on NO3- content and metabolism in roots and leaves and on leaf photosynthesis. No significant difference in predawn leaf water potential was found between half root stress (HRS) and control (CK), while predawn leaf water potential from both was significantly higher than for the whole root stress (WRS) treatment. However, diurnal leaf water potential of HRS was lower than CK and higher than WRS during most of the daytime. Neither HRS nor WRS influenced foliar NO3- concentration, but both significantly reduced NO3- concentration in drought-stressed roots as early as 4 hours after stress treatment started. This reduced NO3- concentration was maintained in HRS and WRS roots to the end of the experiment. However, there were no significant differences in NO3- concerntation between CK roots and unstressed roots of HRS. Similar to the effect on root NO3- concentration, both HRS and WRS reduced nitrate reductase activity in drought-stressed roots. Moreover, leaf net photosynthesis, stomatal conductance and transpiration rate of HRS plants were reduced significantly throughout the experiment when compared with CK plants, but the values were higher than those of WRS plants in the first 7 days of stress treatment though not at later times. Net photosynthesis, stomatal conductance and transpiration rate were correlated to root NO3- concentration. This correlation may simply reflect the fact that water stress affected both NO3- concentration in roots and leaf gas exchange in the same direction.