Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Sha Liu x
  • HortScience x
Clear All Modify Search

Seasonal deacclimation was investigated during Jan. to Mar. 2014 in leaves of 10 azalea cultivars (Rhododendron section Tsutsusi) under natural conditions in eastern China. Based on the midwinter leaf freezing tolerance (LFT), these cultivars were grouped as “more-hardy” vs. “less-hardy.” Eight of the 10 cultivars first showed deacclimation when daily mean temperature over 2-week period preceding the LFT measurement was ≈9.5 °C. Deacclimation for other two cultivars was somewhat delayed and might have involved deacclimation–reacclimation cycling before eventual deacclimation. Our data indicate that the “more-hardy” group deacclimated slower than the “less-hardy” ones over the first half of the deacclimation period. This trend reversed during the second half of the deacclimation period. Accordingly, “more-hardy” and “less-hardy” cultivars depicted a “curvilinear” and “reverse curvilinear/linear” deacclimation kinetics. “More-hardy” cultivars generally had higher total soluble sugars (TSS) than “less-hardy” ones at acclimated state. TSS declined during deacclimation in all cultivars, and the loss was positively correlated with the loss in LFT. Leaf starch content generally followed opposite trend to that of TSS, i.e., it was at lowest during acclimated state and increased during deacclimation.

Free access

Hydrogen sulfide (H2S) has been proven to be a multifunctional signaling molecule in plants. In this study, we attempted to explore the effects of H2S on the climacteric fruit tomato during postharvest storage. H2S fumigation for 1 d was found to delay the peel color transition from green to red and decreased fruit firmness induced by ethylene. Further investigation showed that H2S fumigation downregulated the activities and gene expressions of cell wall–degrading enzymes pectin lyase (PL), polygalacturonase (PG), and cellulase. Furthermore, H2S fumigation downregulated the expression of ethylene biosynthesis genes SlACS2 and SlACS3. Ethylene treatment for 1 d was found to induce the expression of SlACO1, SlACO3, and SlACO4 genes, whereas the increase was significantly inhibited by H2S combined with ethylene. Furthermore, H2S decreased the transcript accumulation of ethylene receptor genes SlETR5 and SlETR6 and ethylene transcription factors SlCRF2 and SlERF2. The correlation analysis suggested that the fruit firmness was negatively correlated with ethylene biosynthesis and signaling pathway. The current study showed that exogenous H2S could inhibit the synthesis of endogenous ethylene and regulate ethylene signal transduction, thereby delaying fruit softening and the ripening process of tomato fruit during postharvest storage.

Free access