Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: Seth D. Wannemuehler x
  • HortTechnology x
Clear All Modify Search

Marker-assisted selection (MAS) use in breeding programs allows for examination of seedlings at an early stage before accumulation of high field costs. However, introducing MAS into a breeding program implies additional costs and uncertainties about effective incorporation. Previous simulations in apple (Malus ×domestica) have shown cost-effective applications of MAS. To further evaluate MAS cost-effectiveness in perennial crops, we conducted a cost-effectiveness analysis examining MAS in an upper midwestern U.S. peach (Prunus persica) breeding program. Breeding program procedures and associated costs were collected and used as input into spreadsheet-based simulations of the breeding program. Simulations compared a conventional breeding program to MAS with varying cull rates of low, medium, and high at multiple stages in the breeding cycle. Cost-effective MAS implementation was identified at the end of seedling trials with a break-even cull rate of 4%. These results inform breeders of cost-effectiveness of MAS use in a peach breeding program.

Open Access

DNA-informed breeding techniques allow breeders to examine individual plants before costly field trials. Previous studies with tree fruits such as apple (Malus ×domestica) and peach (Prunus persica) have identified cost-effective implementation of DNA-informed techniques. However, it is unclear whether breeding programs for herbaceous perennials with 1- to 2-year juvenile phases benefit economically from these techniques. In this study, a cost-benefit analysis examining marker-assisted selection (MAS) in a Pacific northwest U.S. strawberry (Fragaria ×ananassa) breeding program was conducted to elucidate the effectiveness of DNA-informed breeding in perennial crops and explore the capabilities of a decision support tool. Procedures and associated costs were identified to create simulations of the breeding program. Simulations compared a conventional breeding program to a breeding program using MAS with low (12.5%), medium (25%), and high (50%) removal rates, and examined different scenarios where MAS had diminishing power to remove individuals as selections reenter the breeding cycle as parent material. We found that MAS application under current costs was not cost-effective in the modeled strawberry program when applied at the greenhouse stage, but cost-effectiveness was observed when MAS was applied at the end of the seedling trials before clonal trials with a removal rate of 12.5%.

Open Access