Search Results
You are looking at 1 - 2 of 2 items for :
- Author or Editor: Sean M. Westerveld x
- HortTechnology x
The Nutrient Management Act (NMA) established in the province of Ontario in 2002 has prompted a re-evaluation of nitrogen (N) management practices. However, N management research in Ontario is currently outdated. The experiment in this 3-year study was designed to establish the yield response of carrot (Daucus carota) to N fertilization on mineral and organic soils and identify the relative yield effects of preplant and residual soil N. In 2002, N was applied at 0%, 50%, 100%, 150%, and 200% of recommended N application rates in Ontario as ammonium nitrate (organic soil: 60 kg·ha-1 preplant; mineral soil: 110 kg·ha-1 split 66% preplant/33% sidedress). Experimental units were split in half in 2003 and 2004, and N was applied to one half in 2003 and both halves in 2004 to identify the effects of residual N from the previous season on yield. Crop stand, yield, and quality were assessed at harvest, and storability was assessed by placing carrots into cold storage for 6 months. Nitrogen application rate had no effect on the yield, quality, or storability of carrots grown on organic soil. On mineral soil there were no effects of applied N in the first year of the 3-year study. In the second and third year on mineral soil, yield increased in response to increasing N, up to 200% and 91% of the recommended application rate, respectively, based on the regression equations. Yield declined above 91% of the recommended application rate in the third year due to a decrease in stand at higher N application rates. There were no effects of N on carrot quality or storability on mineral soil. On mineral soil, residual N from the 2002 season had more effect on yield at harvest in 2003 than N applied in 2003. This major effect of residual soil N on yield provides an explanation for the lack of yield response to preplant N application in previous studies conducted in temperate regions. These results indicate that there is no single N recommendation that is appropriate for all years on mineral soil. Assessing the availability of N from the soil at different depths at seeding is recommended to determine the need for N application.
Nutrient management legislation has prompted an evaluation of alternative nitrogen (N) management techniques. SPAD (Soil Plant Analysis Development) chlorophyll and Cardy nitrate (NO3 -) meters were evaluated for their potential as tissue nitrogen tests in cabbage (Brassica oleracea var. capitata), onions (Allium cepa), and carrots (Daucus carota subsp. sativus). Cabbage, carrots, and onions were grown on both organic and mineral soils in Ontario, Canada in 2000 and 2001. Nitrogen was applied at five rates to cabbage and carrots and three rates to onions ranging from 0 to 200% of current provincial recommended N rates. In an additional treatment, 50% of the recommended rate was applied preplant and sidedress N applications of 40 kg·ha-1 (35.7 lb/acre) were applied when SPAD chlorophyll meter readings fell below 95 (2000) and 97% (2001) of the highest N rate treatment. Yields were generally unaffected by N rate, except in cabbage in 2000, suggesting adequate N was present in most treatments. SPAD chlorophyll meter readings were highly variable among soil types, cultivars, and years. Chlorophyll readings reached a plateau in adequately fertilized crops in many instances. Cardy readings were less variable among soil types, cultivars, and years. The relationship between N rate and sap NO3-N concentration was generally linear. The results suggest that the use of a well-fertilized reference plot is most appropriate for the SPAD meter on these vegetable crops, while the use of region-specific critical NO3-N concentrations was most appropriate for the Cardy NO3-meter. Both meters would be cost advantageous when over 500 samples are tested. The meters were generally easy to use, except for the SPAD meter on carrots. The meters have potential for N management of vegetable crops under Ontario growing conditions.