Search Results
You are looking at 1 - 9 of 9 items for
- Author or Editor: Santiago García-Martínez x
We studied the genetic variability of some traditional tomato (Lycopersicon esculentum L. Mill.) cultivars of Spain, and established their relationships using both simple sequence repeats (SSR) and sequence related amplified polymorphism (SRAP) markers. These included cultivars from different locations of three main types, Muchamiel, De la pera, and Moruno. Additionally we tested two other local cultivars, `Valenciano' and `Flor de Baladre', plus a small sample of commercial cultivars and a few wild species. Both types of markers resolved the cultivars from different groups, but SSR failed to distinguish some of those classified under the same group. All the De la pera cultivars clustered together by genetic similarity with the SRAP markers. The other traditional cultivars, which are grown in a wider geographic range, formed a more diffuse group, which included the commercial cultivar Roma. The Mexican cultivar Zapotec, a breeding line, and the virus-resistant commercial hybrid `Anastasia' were the most distant of all the cultivars. The latter hybrid had higher similarity to the wild species due to introgressed segments from them carrying the resistance genes. Similar results were observed for SSR markers but with a lower level of resolution. This information would be useful to facilitate tomato germplasm conservation and management efforts.
The Agave potatorum Zucc. is a wild species endemic to Oaxaca and Puebla, Mexico. The stem or “head” of the plants of this species contains a large amount of fructans, which, in conjunction with their crassulacean acid metabolism (CAM), helps the agave to survive droughts. The soluble carbohydrates are used to produce mezcal. The objective was to evaluate growth and content of fructans of A. potatorum young plants grown in soil and perlite substrate, fertigated with three nutrient solutions, and subjected to drought. Eight-month-old plants were used and, for 15 months, were fertigated with nutrient solutions: 1) Steiner, 2) Hoagland and Arnon, and 3) Urrestarazu. Irrigation was later suspended to simulate a 5-month drought and induce stress. During fertigation, the vegetative growth was greater in plants irrigated with Hoagland and Arnon and Urrestarazu solutions in perlite and in soil. After the period of water deficit stress, plants in perlite substrate fertigated with the Hoagland and Arnon solution accumulated more fructans in the heads, reaching a maximum of 75%, than plants in soil substrate (42%).