Search Results

You are looking at 1 - 1 of 1 items for :

  • Author or Editor: Sandra Micheletto x
  • HortScience x
Clear All Modify Search

The climate conditions and chemical composition of root essential oils for 17 populations of Anemopsis californica in New Mexico were examined. The objective of this study was to observe the effect of environmental conditions and management conditions on essential oil composition in different populations of A. californica. Chemical concentrations of three abundant compounds—methyleugenol, thymol, and piperitone—were determined. Maximum accumulations of each compound were associated with different mean annual temperatures, precipitation, and elevation. Similar chemical profiles were detected in root samples recollected for four populations, suggesting retention of unique chemical profiles in different populations. Vegetative propagation of wild plants under cultivated conditions did not significantly alter the chemical profile of the root essential oil. The chemical concentrations for six essential oil components of A. californica roots were determined under field conditions with varying irrigation and nitrogen (N) fertilizer regimens. The concentration of only two compounds, thymol and piperitone, was increased by increasing irrigation. The concentration of all other compounds, methyeugenol, elemicin, 1,8-cineole, and myrtenol, were independent of the irrigation rates and N fertilizer rates used in the study. These results suggest that the chemical variability observed among different populations of A. californica is primarily genetically controlled and the environmental conditions in New Mexico are conducive to the production of this medicinal plant as a high-value crop.

Free access