Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Samuel Salazar-García x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Avocado trees (Persea americana Mill.) bearing a heavy crop produce a light “off” bloom the next spring. This results in a light crop and a subsequent intense “on” bloom the year after. The objective of the study was to quantify the effects of GA3 canopy sprays applied to `Hass' avocado trees during the months preceding an “off” or “on” bloom on inflorescence and vegetative shoot number and yield. The experiment was initiated approximately seven months before an anticipated “off” bloom in an attempt to increase flowering intensity and yield. GA3 (25 or 100 mg·L-1) was applied to separate sets of trees in September (early stage of inflorescence initiation), November (early stage of inflorescence development), January (initial development of the perianth of terminal flowers), March (cauliflower stage of inflorescence development; only 25 mg·L-1), or monthly from September through January (only 25 mg·L-1). Control trees did not receive any treatment. GA3 (100 mg·L-1) applied in September reduced inflorescence number in both years, but not yield. GA3 (25 or 100 mg·L-1) applied in November before the “on” bloom reduced inflorescence number with a concomitant increase in vegetative shoot number and 47% yield reduction compared to control trees. This treatment might provide avocado growers with a tool to break the alternate bearing cycle by reducing yield in an expected “on” crop year to achieve a higher yield the following year. GA3 (25 mg·L-1) applied in November or January stimulated early development of the vegetative shoot of indeterminate inflorescences. January and March applications did not affect the number of flowering or vegetative shoots produced either year. GA3 (25 mg·L-1) applied in March at the start of an “off” bloom increased 2-fold the production of commercially valuable fruit (213 to 269 g per fruit) compared to the control.

Free access

The objectives of the present research were to quantify 1) the contribution that vegetative shoots produced in the summer vs. fall and indeterminate vs. determinate inflorescences make to yield and 2) the effects of GA3 on flowering expression and inflorescence phenology of summer and fall shoots of `Hass' avocado (Persea americana Mill.) under field conditions. Anthesis started earlier on fall than summer shoots of 10-year-old `Hass' avocado trees; however, no difference in the date of full bloom was observed. Indeterminate inflorescences that underwent early anthesis set more fruit than those with delayed anthesis, conversely, determinate inflorescences with delayed anthesis set more fruit. Indeterminate inflorescences comprised 90% of total inflorescences and contributed 73% of total fruit yield, but individual determinate inflorescences were at least three times more productive than the indeterminate ones. Summer and fall shoots were sprayed with 0, 50, 100, or 1000 mg·L-1 GA3 in November, December or January. GA3 stimulated apical growth of all shoots. If secondary axes of an inflorescence bud were differentiated at the time of GA3 application, the inflorescence developed in advance of inflorescences on branches not treated with GA3. In addition, GA3 caused precocious development of the vegetative shoot of indeterminate inflorescences relative to the flowers in the same inflorescence and relative to the vegetative shoot of indeterminate inflorescences from untreated branches. Stimulation of vegetative growth at the inflorescence apex by GA3 inhibited growth of axillary buds. GA3 at 50 mg·L-1 had no effect on the number of determinate or indeterminate inflorescences produced by either summer or fall shoots. Higher concentrations of GA3 increased the number of vegetative shoots and inactive buds produced by both shoot types.

Free access

The developmental stage at which the shoot primary axis meristem (PAM) of the `Hass' avocado (Persea americana Mill.) is committed to flowering was determined. Three-year-old trees were subjected to low-temperature (LT) treatments at 10/7 °C day/night with a 10-h photoperiod for 1 to 4 weeks followed by 25/20 °C day/night at the same photoperiod. Before LT treatment, apical buds of mature vegetative shoots consisted of a convex PAM with two lateral secondary axis inflorescence meristems lacking apical bracts each associated with an inflorescence bract. Apical buds did not change anatomically during LT treatment. However, the 3- and 4-week LT treatments resulted in inflorescences at 17% and 83% of apical buds, respectively. Trees receiving 2 weeks or less LT, including controls maintained at 25/20 °C, produced only vegetative shoots. Apical buds of 2-year-old trees receiving 3 weeks at 10/7 °C plus 1 week at 20/15 °C produced 100% inflorescences. GA3(100 mg·L-1) applied to buds 2 or 4 weeks after initiation of this LT treatment did not reduce the number of inflorescences that developed. `Hass' avocado apical buds were fully committed to flowering after 4 weeks of LT, but were not distinguishable anatomically from those that were not committed to flowering.

Free access

Inflorescence and flower development of the `Hass' avocado (Persea americana Mill.) were investigated at the macro- and microscopic level with three objectives: 1) to determine the time of transition from vegetative to reproductive growth; 2) to develop a visual scale correlating external inflorescence and flower development with the time and pattern of organogenesis; and 3) to quantify the effect of high (“on”) and low (“off”) yields on the flowering process. Apical buds (or expanding inflorescences) borne on summer shoots were collected weekly from July to August during an “on” and “off” crop year. Collected samples were externally described and microscopically analyzed. The transition from vegetative to reproductive condition probably occurred from the end of July through August (end of shoot expansion). During this transition the primary axis meristem changed shape from convex to flat to convex. These events were followed by the initiation of additional bracts and their associated secondary axis inflorescence meristems. A period of dormancy was not a prerequisite for inflorescence development. Continued production of secondary axis inflorescence meristems was observed from August to October, followed by anthesis seven months later. In all, eleven visual stages of bud development were distinguished and correlated with organogenesis to create a scale that can be used to predict specific stages of inflorescence and flower development. Inflorescence development was correlated with minimum temperature ≤15 °C, whereas yield had little effect on the timing of developmental events of individual inflorescence buds. However, the high yield of the “on” year reduced inflorescence number and increased the number of vegetative shoots. No determinate inflorescences were produced during the “on” year. For the “off” year, 3% and 42% of shoots produced determinate and indeterminate inflorescences, respectively.

Free access