Search Results

You are looking at 1 - 4 of 4 items for :

  • Author or Editor: Samuel F. Hutton x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Bacterial spot of tomato (Solanum lycopersicum), caused by several Xanthomonas species, is one of the most important diseases of the crop in humid production regions of the world. Conventional breeding approaches for resistance to bacterial spot previously identified race-specific resistances, but current efforts also seek to use quantitative trait loci (QTLs) effecting broad-spectrum resistance. Resistance QTLs and candidate QTLs have been reported on several chromosomes, including a major QTL on chromosome 11. Fusarium wilt (Fusarium oxysporum f. sp. lycopersici) race 3 resistance gene, I-3, is associated with smaller fruit size and has been implicated in other associations with negative characteristics. We evaluated four F2 populations involving the bacterial spot-tolerant breeding lines Fla. 8517, Fla. 8233, and Fla. 8326 across two field seasons to validate and quantify previously identified loci and to test for an effect of I-3 on bacterial spot sensitivity. The chromosome 11 QTL and the I-3 locus were each consistently positively and negatively associated with resistance, respectively, and together explained from 44% to 47% of the variation in each population. The chromosome 11 QTL displayed a dominant to incompletely dominant effect, reducing infection by 14% to 25%. This QTL is distinct from the X. perforans race T3 hypersensitivity loci, Rx-4 and Xv3. The I-3 locus contributed to as much as a 20% increase in infection in I-3/I-3 plants vs. i-3/i-3 plants, and heterozygosity for I-3 generally resulted in an intermediate susceptible response. Significant effects for QTLs on chromosomes 3, 5, and 12 were also observed, but these effects were not consistent in all populations or seasons in which they were segregating. Implications of these findings toward breeding strategies are discussed.

Free access

Mechanization of farm work is increasingly demanded for the current system of fresh-market tomato (Solanum lycopersicum) production. One essential element for the adoption of mechanical harvest of fresh-market tomatoes is modification of plant architecture so that the crop can be grown without staking. To address this in the current production system, the stem length should be reduced. The tomato brachytic (br) locus has been shown to be a primary source of reducing stem length. To improve the effectiveness of marker-assisted selection (MAS) for the br-mediated trait and to provide resources for cloning this gene, we fine-mapped br to the tomato genome. Fine mapping of br to chromosome 1 was initiated by a survey of genome-wide single-nucleotide polymorphisms (SNPs) shown to be polymorphic between the br phenotype and normal using the tomato array, identifying the interval that harbors br. Genetic markers that flank the locus further permitted saturation of the interval. Twenty-six fixed homozygous recombinant lines were identified together in two different populations and tested with those markers. These efforts resulted in the first report that the br is fine-mapped to a 763-kb physical interval of tomato reference genome. The identified markers close to the br in the present study will be significant resources for MAS and gene cloning research.

Open Access

Fusarium wilt of tomato (Solanum lycopersicum), caused by fungal pathogen Fusarium oxysporum f. sp. lycopersici (Fol), is one of the most important diseases in tomato production. Three races of the pathogen are described, and race-specific resistance genes have been applied in commercial tomato cultivars for controlling the disease. Race 3 (Fol3) threatens tomato production in many regions around the world, and novel resistance resources could expand the diversity and durability of Fol resistance. The wild tomato species, Solanum pennellii, is reported to harbor broad resistance to Fol and was the source of two known Fol3 resistance genes. In this study, we evaluated 42 S. pennellii accessions for resistance to each fusarium wilt race. F1 plants, developed from crossing each accession with the Fol3 susceptible line ‘Suncoast’, were evaluated for Fol3 resistance, and BC1F1 plants were screened to determine the likelihood that Fol3 resistance was based on a novel locus (loci). Nearly all accessions showed resistance to Fol3, and many accessions were resistant to all races. Evaluation of F1 plants indicated a dominant resistance effect to Fol3 from most accessions. Genetic analysis indicated 24 accessions are expected to contain one or more novel Fol3 resistance loci other than an allele near the I-3 locus. To investigate genetic structure of the S. pennellii accessions used in this study, we genotyped all 42 accessions using genotyping by sequencing. Approximately 20% of the single nucleotide polymorphism (SNP) loci were heterozygous across accessions, likely due to the outcrossing nature of the species. Genetic structure analysis at 49,120 unique SNP loci across accessions identified small but obvious genetic differentiations.

Open Access

Tomato (Solanum lycopersicum) is an important vegetable crop and a valuable source of nutrients for the human diet. The southeast is the main fresh market tomato producer of the United States, with much of the production concentrated in Florida. However, production in this region is threatened by plant diseases such as target spot of tomato (TS) caused by Corynespora cassiicola, a multitrophic fungus widely distributed in tropical and subtropical areas. TS can infect foliage and fruit, often resulting in significant yield losses in conductive environments. There are no known TS-resistant cultivars, and control relies entirely on fungicidal sprays. However, several studies have demonstrated that the fungus is developing resistance to commonly used fungicides which further complicates disease management. The objective of this work was to identify sources of resistance to TS from wild Solanum accessions. Initial screens of 83 accessions informed the selection of 24 accessions for a more robust screening in which six diverse C. cassiicola isolates were used for single-isolate inoculation experiments. The results from a broad-sense mixed-model analysis including data from all six experiments demonstrated that all 24 accessions had significantly lower disease severities compared with the susceptible controls, suggesting that all accessions potentially harbor resistance quantitative trait loci (QTLs). Solanum cheesmaniae accession LA0524, S. galapagense accessions LA0483 and LA0532, and S. pimpinellifolium accession LA2093 were among the most resistant accessions tested and may be particularly useful for introgression of resistance into cultivated germplasm and for mapping of TS resistance QTLs.

Open Access