Search Results
You are looking at 1 - 10 of 16 items for :
- Author or Editor: S.J. Scott x
- HortScience x
Media and nutrient variables were investigated to develop methods of reducing the incidence and severity of fusarium crown rot incited by Fusarium oxysporum Schlecht. f. sp. radicis-lycopersici Jarvis & Shoemaker (FORL), a disease problem of current importance with tomato Lycopersicon esculentum Mill. Root-dip inoculated seedlings were transplanted into trays of a 1 Canadian peat: 1 vermiculite medium that had been prepared with factorial combinations of CaCO, (0.75 or 3.0 kg·m), Ca(NO) or (NH) SO (each at 225 mg N/liter), and NaCl at 0 or 2000 mg Na/liter as the experimental treatments. Crown rot was more severe with the lower CaCO rate, with (NH) SO, and supplemental NaCI. Data on fresh weight of seedlings expressed as percentage values relative to the noninoculated controls supported observations on disease severity.
Fresh market tomatoes (Solanum lycopersicum L.) handled through dump tanks and flumes at packinghouses can absorb water via stem scar tissues. This water uptake can lead to internalization of various hazardous bacteria, including Erwinia carotovora (Jones), the causal agent of bacterial soft rot. Studies were conducted to determine if the interval between harvest and water immersion affected water uptake for ‘Florida 47’ and ‘Sebring’, cultivars with high and low water uptake, respectively. Fruit were held for 2, 8, 14, and 26 hours after harvest for the fall season and 2, 4, 6, 8, and 14 hours for the following spring season before water immersion. Mature green fruit were weighed, submerged in water for 2 min and then reweighed to determine water uptake. During the submergence, air pressure was applied such that the fruit were exposed to a static water-head equivalent to 1.3 m. In the fall season ‘Sebring’ fruit absorbed significantly less water than ‘Florida 47’ fruit at 8 and 26 hours after harvest. In the spring season fruit of ‘Sebring’ absorbed significantly less water than ‘Florida 47’ at all times after harvest, confirming results of previous studies. In the fall season, the time interval between harvest and treatment did not affect water uptake for either cultivar. By contrast, in the spring season fruit absorbed significantly greater amounts of water at 2 hours as compared with 4, 6, 8, and 14 hours after harvest, whereas similar amounts of water were absorbed at 4–14 hours after harvest. Therefore, to minimize the tendency of fruit to absorb water, packinghouse managers should hold freshly harvested fruit for at least 4 hours before immersing them in the dump tank.
Three methods to inoculate Lycopersicon esculentum 'VF Pink' seedlings with tomato spotted wilt virus (TSWV) were compared. Treatments were 1) two inoculations by hand (rubbing leaves with a sterile cotton swab), 2) a single inoculation using a paint sprayer at 3.56 × 105 N· m-2, and 3) two spray inoculations. All three methods were effective (>95% infection) under moderate temperatures in the spring, but hand inoculation was not effective under hot conditions in the summer. In another experiment, spray inoculation was used to compare effects of light intensity and the leaf inoculated on susceptibility of L.. hirsutum PI 127826, L. pimpinellifoliom LA 1580 and `VF Pink' to TSWV isolate 85-9. All three genotypes were susceptible under full sun and 60% shade cloth in the greenhouse. Inoculation of youngest leaves produced the highest virus titer. Background optical density for noninoculated plants differed between lower and upper leaves in the ELISA assay.
Seedlings of eight accessions of L. hirsutum and susceptible L. esculentum `VF Pink' controls were spray inoculated twice in the greenhouse with tomato spotted wilt virus (TSWV) Arkansas 85-9. Plants lacking symptoms were reinoculated, then evaluated for TSWV by enzyme-linked immunosorbent assay (ELISA). Controls were consistently infected; sixty noninfected L. hirsutum were propagated by cuttings and inoculated with TSWV isolates T2 (lettuce), G-87 (gloxinia), 87-34 (tomato) and a mixture of the four isolates. All selections became infected in at least one test, but systemic infection was often delayed. Additional wild Lycopersicon species and numbers of accessions evaluated for resistance to TSWV include L. cheesmanii (9), L. chmielewskii (17), L. hirsutum (24), L. hirsutum f. glabratum (17), L. parviflorum (4) and L. pennellii (44). No new sources of strong resistance have been identified yet. Evaluation of additional species and accessions is continuing.
Abstract
‘Ozark Pink’ VF is an indeterminate, pink-fruited tomato (Lycopersicon esculentum Mill.) developed at the Univ. of Arkansas to replace ‘Traveler 76’ (2), which is susceptible to verticillium wilt. ‘Ozark Pink’ provides the excellent flavor quality of traditional Arkansas pink tomatoes with improved fruit size and disease resistance over ‘Traveler 76’. Fruits also are larger and firmer than ‘VF Pink’ (3), which was grown primarily in southeastern Arkansas. ‘Ozark Pink’ is adapted to stake culture and vine-ripe harvest for local market, shipping short distances and for home gardens throughout Arkansas and the Ozark Mountain area. Pink cultivars remain the most popular type sold as bedding plants and at roadside stands in Arkansas, although part of the commercial acreage now grows red-fruited cultivars.
Tomato (Lvcopersicon esculentum) line E427 contains Fusarium wilt resistant gene I-3 on chromosome 7 and I-2 (and presumably the linked I) genes on chromosome 11. E427 was crossed with `Bonny Best' (i, i-2, i-3) and backcrosses (BC) to `Bonny Best' and F2, seed were obtained. Self pollination of 187 BC and 150 F2 plants were made. Progeny were screened against Fusarium races 1, 2, and 3 and lines with recombinant ratios were self-pollinated and rescreened until homozygous. Five lines were resistant to races 2 and 3 but susceptible to race 1. These had the isozyme band got-2 linked to I-3, RFLP markers linked to I-3 and no RFLP markers linked to I-2. Five lines were resistant to race 1 but susceptible to races 2 and 3. These had the susceptible qot-2 band and no RFLP markers linked to I-3 or I-2. F2 complementation tests of 2 of these lines with `Manapal' (I) indicated they contained I. Three lines were resistant to race 2 but susceptible to races 1 and 3. These had the susceptible qot-2 band, I-2 linked RFLP markers, and no I-3 linked RFLP markers.
Five experiments were run using surfactants and gibberellic acid (ProGibb). Fruit set is a problem with rabbiteye blueberry plants. Gibberellic acid sprayed on plants when they are in bloom does enhance fruit set. Currently, it costs $247/ha to achieve this enhanced fruit set. `Tifblue', `Climax', and `Woodard' cultivars were used in on-farm experiments. Usually, applications of 80 + 80 are used. With use of X-77 and L-77 surfactants, rates were reduced to 40 + 40. Other rates examined were 32 + 32, 24 + 24, 16 + 16 + 16. Fruit was enhanced significantly over no spraying. Airblast I sprayer performed better PropTec, whether used for day or night applications. Spraying slanting downward produced greater fruit set than from the side. E1: Trt = 15 – 20, C = 11 lb/lo. E2: 32 + 32 = 12, 16 + 16 = 7 lb/lo. E3: AB = 64, PT = 48 %FS; Trt = 56, C = 35 %FS; `C' = 73, `T' = 39 %FS. E4: 5% FS with Trt; `T' = 53, `W' = 57 %FS. E5: 30 + 30 = 87, – 40 + 40 = 80 %FS.
Abstract
Ripening of tomatoes (Lycopersicon esculentum Mill.) was delayed by vacuum infiltrating fruit with CaCl2 solutions. Ripening was only delayed substantially when Ca content of fruit was raised to greater than 40mg/100g fresh weight from the original concentration of 11mg/100g.