Search Results

You are looking at 1 - 10 of 19 items for :

  • Author or Editor: S.J. Locascio x
  • HortScience x
Clear All Modify Search

Watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai] were grown with three rates each of lime, gypsum, and K during two seasons to evaluate their effects on fruit production and mineral concentration. The first experimental site was a recently cleared Sparr fine sand with an initial water pH of 5.0 and Mehlich I extractable K of 8 mg·kg-1 (very low) and 20 mg·kg-1 Ca (very low). The second site was a virgin Pomona fine sand with a water pH of 4.8, 28 mg·kg-1 K (low), and 612 mg·kg-1 Ca (high). `Crimson Sweet' fruit yields were reduced 10% with an increase in lime rate from 0 to 4.48 t·ha-1 in the first season. In the second season, lime rate had no effect on yield. In both seasons, fruit yields were reduced 14% with an increase in Ca from gypsum from 0 to 1.12 t·ha-1. On the soil testing very low in K, yield increased with an increase in K rate from 90 to 224 kg·ha-1 with no lime or gypsum. On the soil testing low in K, greatest yields were obtained with 90 kg·ha-1 K with no lime and gypsum. Application of lime and gypsum increased Ca and decreased K in seedlings but not consistently in older leaf and fruit tissues. An increase in K application increased leaf K in the first season but not in the second. Fruit firmness and soluble solids content were not consistently affected by treatment during the two seasons. Thus, on soils low in toxic elements (Mn and Al) such as used in this study, watermelon will grow well and tolerate a wide range of soil pH values without additional Ca from lime or gypsum.

Free access

Watermelons [Citrullus lanatus (Thunb.) Matsum. & Nakai] were grown with three rates each of lime, gypsum, and K during two seasons to evaluate their effects on fruit production and mineral concentration. The first experimental site was a recently cleared Sparr fine sand with an initial pH of 5.4 and Mehlich I extractable K of 32 ppm (low) and 948 ppm Ca. The second site was a virgin Pomona fine sand with a pH of 4.8, 28 ppm K, and 612 ppm Ca. `Crimson Sweet' fruit yield was reduced 10% with an increase in lime rate from to 4.48 Mt·ha-1 in the first season. In the second season, lime rate had no effect on yield. In both seasons, fruit yields were reduced 14% by an increase in Ca from gypsum from 0 to 1.12 Mt·ha-1. Fruit yields were not influenced by K rates from 90 to 224 kg·ha-1. Application of lime and gypsum increased leaf tissue Ca concentrations and decreased K. An increase in K application significantly increased leaf K and decreased Mg in the first season but not significantly in the second season. Fruit firmness and soluble solid content were not consistently affected by treatment.

Free access

Although the effects of salinity on yield of tomato (Lycopersicon esculentum Mill.) grown under arid and semiarid conditions are well known, little information is available on the effects of salinity on crops grown in more humid conditions. In Florida, availability of high-quality water for irrigation may be reduced because of increased domestic consumption and sea water intrusion. Two greenhouse studies were conducted to determine the influence of irrigation system and water quantity and quality on the growth of tomato and snap bean (Phaseolus vulgaris L.). Bean plant heights and weights were greater with drip irrigation than with subirrigation. Bean seed germination percentage, plant height, and shoot weight decreased linearly with an increase in electrical conductivity of irrigation water (ECi) from 1 to 4 dS·m-1. Tomato leaf water potential and plant height decreased linearly with increasing salinity. Tomato stem and leaf weights were greatest at the intermediate salinity (2 dS·m-1) during initial growth, and stem weights decreased linearly with increased salinity during flowering. With drip irrigation, concentration of N for both crops decreased and concentration of P increased with an increase in water application from 0.75 to 1.5 times the estimated evapotranspiration rate (ETa). Tomato and bean tissue Na concentrations increased linearly with increased salinity. Total fruit yield and average fruit weight decreased linearly in tomato, and marketable fruit yield decreased quadratically with increased salinity.

Free access

Tomatoes (Lycopersicon esculentum Mill.) were grown on an Arredondo fine sandy soil to evaluate the effects of water quantity scheduled by pan evaporation using drip irrigation and polyethylene mulch in a three year study. Water was applied at 0, 0.25, 0.50, 0.75, and 1.0 times pan evaporation in one application per day. The response to irrigation varied with rainfall during the three seasons. In an extremely dry season, fruit yields were doubled by irrigation. Total fruit yields were highest with irrigation quantities of 0.75 and 1.0 times pan and significantly lower with 0.25 and 0.50 times pan water quantity. In an extremely wet season, fruit yields were not influenced by water quantities from 0 to 1.0 times pan. In a third season that was wet from the middle to the end of the season, irrigation more than doubled the marketable yield. However, yield increased only from 65.9 Mt·ha-1 with 0.25 times pan to 74.1 Mt·ha-1 with 0.75 times pan. Tomato leaf N concentrations were reduced slightly with each increase in water quantity applied even though N was applied with drip irrigation.

Free access

Four experiments were conducted to evaluate the influence of transplant age and container size on `Green Duke' broccoli production. Transplant ages (weeks from seeding) were 3, 4, and 5 weeks in Exp. A, 4, 5, and 6 weeks in Exps. B and D and 3, 4, 5, and 6 weeks in Exp. C. Cell sizes were 2.0 cm (width) × 3.2 cm deep (2.0 cm), 2.5 cm × 7.2 cm deep (2.5 cm), and 3.8 cm × 6.4 cm deep (3.8 cm) with each transplant age. With the smallest container size (2.0 cm), yields were significantly lower in 3 of 4 experiments as compared to the 3.8 cm container size. In 2 of 4 experiments, yields were lower with the 2 cm size as compared to the 2.8 cm container size. In Exps. A and B transplant age did not influence yield, but use of the oldest transplants in Exp. C resulted in reduced yields while use of the oldest transplants in Exp. D resulted in the highest yields Generally, head weights followed similar patterns to the yields.

Free access

Abstract

Three glasshouse experiments were conducted in which “starter” N, P, and K fertilizers were incorporated either within or below gel used for fluid sowing pregerminated seed of ‘Avondefiance’ lettuce (Lactuca sativa L.) and ‘Derby Day’ cabbage (Brassica oleracea L. Capitata group). Addition of nutrients to the gel at salt concentrations between 384 and 1893 mg-ion/liter inhibited emergence of the pregerminated seeds. Additions to the gel at concentrations between 9 and 21 mg-ions/liter were too low to affect the growth of the plants. Nutrient solutions applied to the base of the furrow immediately prior to fluid drilling the seeds allowed higher concentrations of salts to be used without reducing emergence. Solutions that contained factorial combinations of 0.84 g/liter N, 1.86 g/liter P, and 2.34 g/liter K applied at the rate of 0.5 ml/cm of furrow increased lettuce dry matter production by up to 44% after 20 days growth, although there was no significant effect on the growth of cabbage. The increase in lettuce growth was mainly in response to P ‘starter’ fertilizer but the largest response was achieved with the N + P + K ‘starter’ treatment.

Open Access

Tomatoes (Lycopersicon esculentum Mill.) were grown on a sand and loamy sand to evaluate the effects of K source, K rate, and Ca rate on plant nutrient uptake, fruit yield, and fruit quality. The K was applied at 200 and 400 kg K·ha-1 from KCl and K2SO4. Gypsum was applied at 0, 450 and 900 kg Ca·ha-1. On the sand, tomato N leaf tissue concentrations were higher with K2SO4 than KCl. Leaf K concentrations were higher and Ca contents were lower with the higher than lower K rate. At first fruit harvest, leaf Ca concentrations were linearly increased with an increase in Ca rate. Early and total fruit yields, however, were not influenced by K source, K rate, or Ca rate at both locations Marketable fruit were more firm with K2SO4 than KCl and with 200 than 400 kg K·ha-1 on the sand. Fruit were less firm on the sandy loam than sandy soil but was not affected by K source or rate on the former soil. Ca rate had no effect on fruit firmness on either soil. Fruit citric acid contents were higher with KCl than K2SO4 and with 400 than 200 kg K·ha-1, Fruit color and percentage dry weight were not affected by treatment.

Free access

Tomatoes (var. Sunny) were grown using drip irrigation and polyethylene mulch in a three-year study with water applied to plots at 0, 0.25, 0.50, 0.75 and 1.00 times pan evaporation in one application per day. Breaker stage fruit were harvested twice each season at 7 to 10 day intervals and evaluated after storage for 11 days at 20C. Response to water application varied with seasonal rainfall levels. Soluble solids levels decreased with increasing water quantity only in the first (relatively dry) season, while titratable acidity levels decreased with increasing water in all three seasons. Fruit color was not affected by water quantity in the first season but hue angle increased and chroma decreased with increasing water in the second and third seasons. Decay incidence (associated primarily with blossom end rot) was higher in nonirrigated than irrigated treatments and in the second harvests. Internal white tissue, a symptom of irregular ripening, was more common in irrigated treatments and in the wetter second and third seasons

Free access

`Equinox' tomatoes (Lycopersicon esculentum Mill.) were grown during the springs of 2001 and 2002 with black polyethylene-mulch and drip irrigation on an Arredondo fine sand in Gainesville, Fla., to study the influence of water quantity, Ca source, and reduced K on incidence of blossom-end rot (BER), marketable fruit yield, and fruit and leaf Ca concentration. Tensiometers were used to schedule irrigation in main plots when the soil matric potential reached 10 or 25 kPa. Subplot nutritional treatments were no added Ca, Ca(NO3)2, Ca thiosulfate, CaCl2, CaSO4, and K rate reduced by 50%. Interactions between year and treatment were significant. During 2001, total marketable yields were higher with Ca(NO3)2 or CaCl2 compared to plants that received Ca thiosulfate and were higher from plants irrigated at 10 kPa than irrigated at 25 kPa. Number and weight of BER fruit were lower with Ca(NO3)2 and reduced K than with no added Ca and CaSO4. Leaf and fruit Ca concentrations were generally higher with Ca(NO3)2 compared to all other nutritional treatments. Leaf and fruit Ca concentrations were generally higher from plants irrigated at 10 kPa than at 25 kPa. The reduction of NH4 +-N, by the supply of N as NO3 -, and the addition of supplemental Ca reduced the incidence of BER, and increased the leaf and fruit Ca concentrations. During 2002, marketable yields were higher with CaSO4 than with CaCl2 and reduced K. Weight and number of BER fruit were lower with irrigation at 10 kPa than at 25 kPa. Leaf and fruit Ca concentrations were higher or similar from plants that received Ca(NO3)2 than with all other nutritional treatments. During the 2002 season, rainfall was less and temperatures and daily evapotranspiration (ET) were higher than in the 2001 season. In the 2002 season, 3.28 × 106 L·ha-1 of irrigation was applied as compared to 1.58 × 106 L·ha-1 in 2001. With an average Ca concentration of 76 mg·L-1 in the irrigation water, much more Ca was applied during the higher ET 2002 season. With the higher transpiration and temperature, water uptake and hence, Ca uptake were increased. During both seasons, the lowest Ca concentration was observed at the blossom end of the fruit and the highest Ca at the stem end of the fruit. Fruit Ca concentrations were lower and BER was 5 times higher in the lower ET, higher rainfall (lower irrigation) 2001 season compared to the higher ET, lower rainfall (higher irrigation) 2002 season. These data support that BER was a symptom of Ca deficiency and this deficiency was aggravated by high rainfall, low ET, and the resulting reduced irrigation applied and reduced Ca uptake.

Free access

Strawberries (Fragaria ×ananassa, Duch) were grown in the annual hill system at four locations in Florida to compare the effects of standard black low density polyethylene (LDPE) mulch and red reflective mulch (SMR-red) on fruit size and production. Marketable fruit size was not affected by mulch color. Early and total marketable fruit yields were not affected by mulch color at Bradenton, but yields were significantly higher at Gainesville with red than black mulch, and were significantly higher with black than red mulch at Quincy and Hastings. Soil temperatures under the black mulch were significantly higher than red mulch at Hastings but significantly higher under red than black mulch at Gainesville. Mean soil temperatures at soil depths of 5 to 25 cm ranged from 0.2 to 0.4 °C Reflected photosynthetically active radiation values at 25 and 50 cm above the mulch were higher earlier in the season and decreased as the season progressed. Within a month after transplanting when foliage covered about 10% of the mulch, reflections were lower and similar at both heights with black mulch than red and were higher at 25 than 50 cm with red mulch. Data indicate that there was not a consistent advantage of the use of this red mulch over black mulch at four locations in Florida.

Free access