Search Results

You are looking at 1 - 2 of 2 items for :

  • Author or Editor: S. Pararajasingham x
  • HortTechnology x
Clear All Modify Search

In growing greenhouse tomato (Lycopersicon esculentum Mill.) using the nutrient film technique (NFT), HNO3 or H3PO4 is usually added to offset the increase in pH of the recirculating solution. For economic and environmental reasons, HCl would be a possible substitute for either HNO3 or H3PO4. Therefore, experiments were initiated to evaluate HCl as an alternative acid in controlling the pH of the recirculating solution in NFT-grown greenhouse tomato. The effects of HNO3, H3PO4, and HCl on the growth, fruit yield, and fruit quality were quantified. In 1995, these effects were tested using `Trust' and `BST 7804' at a recirculating solution pH of 5.5, 6.0, or 6.5; in 1996, only `Trust' was grown at a recirculating solution pH of 6.2. In the 1995 experiment, genotypic differences in marketable fruit yield tended to be smaller when HCl was used to control the recirculating solution pH at 6.0 than when either H3PO4 or HNO3 was used. In `Trust', at a pH of 5.5 under the HCl treatment, fruit quality tended to be higher than in other treatment combinations. In 1996, over a 45-day period, the concentration of Cl that accumulated in the recirculating solution from added HCl was 313 mg·L−1 (313 ppm). There were no significant effects of the treatments on the growth, fruit quality, or yield of the crop. The total marketable yield was better when HCl had been used, likely due to high fruit production at the early part of the harvesting period. Potential savings for the season can be achieved if HCl is substituted for H3PO4 to regulate the nutrient solution pH in NFT-based greenhouse tomato production.

Full access

Experiments were carried out to evaluate two salts, K2SO4 and NaCl, as materials to supplement the electrical conductivity (EC) of the basic nutrient solution in nutrient film technique (NFT). The effects of these materials on the growth, yield and fruit quality of greenhouse tomato (Lycopersicon esculentum Mill.) grown by NFT were quantified. These effects were tested by increasing the recirculating solution EC from a base value of 1500 μS·cm-1 to that suitable for the crop growth stage with normal feed (macronutrients), 0.38 m (0.53 lb/gal) K2SO4 or 1.14 m (0.55 lb/gal) NaCl, at a common pH of 6.2. In 1995 and 1996, there were no significant effects of the treatments on crop growth. In 1995, the early marketable yield was significantly lower when K2SO4 was used but the yield at the end of the season did not differ among the treatments. Furthermore, with K2SO4, the proportion of grade #1 fruit in early total yield was lower than in the control, while, fruit biomass content was higher than in the NaCl treatment. In 1996, the cumulative marketable fruit weight was unaffected by the treatments. A trend toward high number of large grade fruit occurred with the NaCl treatment. The pH and EC of the fruit homogenate were favorably affected by the NaCl treatment. Adding K2SO4 or NaCl in partial substitution of macronutrients in the recirculating solution may have a role in NFT systems in not only reducing environmental pollution (from nitrates and phosphates) and fertilizer costs, but also in improving fruit quality and, therefore, profit margins.

Full access