Search Results
You are looking at 1 - 1 of 1 items for :
- Author or Editor: Rui Zhou x
- Journal of the American Society for Horticultural Science x
Photosynthesis and carbohydrate metabolism in apple [Malus sylvestris (L.) Mill. var. domestica (Borkh.) Mansf.] source leaves were monitored during a 7-day period after source-sink manipulations by girdling or partial defoliation treatments. In the girdling treatment, sorbitol, sucrose, glucose, and starch accumulated in leaves, and net photosynthetic rates (Pn) at 350 μL·L-1 CO2 decreased during a 7-day period. Pn measured at 1000 μL·L-1 [CO2] was also decreased but the changes were less. Stomatal conductance and intracellular CO2 concentration decreased markedly in leaves of girdled shoots. When shoots were partially defoliated, starch and glucose concentrations in remaining source leaves declined steadily during the 7-day study period. Sorbitol and sucrose concentrations decreased during the first 2 days after defoliation, then increased the following 5 days. Pn of the remaining leaves measured at ambient and elevated CO2 levels were enhanced markedly. Aldose-6-phosphate reductase activity in source leaves increased markedly from 27.5 to 39.2 μmol·h-1·g-1 fresh weight (FW) after partial defoliation but remained unchanged in leaves after girdling. Selective and maximum sucrose phosphate synthase (SPS) activities increased following partial defoliation and decreased following girdling. ADP-glucose pyrophosphorylase activity remained relatively unchanged in the partial defoliation treatments but increased markedly in the girdled-shoot leaves. These results suggested that girdling-induced photosynthetic inhibition is mainly due to stomatal limitation, however, the photosynthesis enhancement by partial defoliation may be due primarily to acceleration of photosynthetic capacity per se. These studies showed that the metabolism of sorbitol, sucrose and starch, three photosynthetic end products in mature apple leaves, was coordinately regulated in source leaves in response to source-sink manipulations.