Search Results

You are looking at 1 - 3 of 3 items for :

  • Author or Editor: Rong Zhang x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search

Thermosensitive genic male sterile (TGMS) lines are the core of two-line hybrid systems. MicroRNAs (miRNAs) play critical roles in plant growth and development. However, knowledge of regulation of anther development by miRNAs in TGMS eggplant (Solanum melongena) is largely unexplored. To investigate the mechanism underlying miRNA regulation of male sterility, we employed high-throughput small RNA sequencing in anther samples from the reverse TGMS line 05ms and the temperature-insensitive line S63 in eggplant, under high temperature and low temperature conditions. The 05ms line is sterile at low temperature and fertile at high temperature. A total of 166,273,427 raw reads were obtained, 143 known miRNAs from 42 miRNA families and 104 novel miRNAs were detected. Further, six differentially expressed miRNAs (DEMs) were identified, including three known (miR168b-3p, miR397–5p, and miR408) and three novel miRNAs (Novel_116, Novel_119, and Novel_97), which might be related to anther development. Moreover, the six DEMs were validated by quantitative real-time polymerase chain reaction and 892 target genes of which were predicted. Gene Ontology analysis of target genes revealed significant enrichment in the “copper ion binding,” “oxidation-reduction process,” and “oxidoreductase activity” terms. Kyoto Encyclopedia of Genes and Genomes analysis revealed that “plant hormone signal transduction” and “other glycan degradation” were enriched. In addition, we constructed regulatory networks comprising miRNAs, target genes, and important terms/pathways and found the miR397-5p was the most linked miRNA, down-regulated under low temperature. Our findings contribute to understanding of the roles of miRNA during anther development and provide the theoretical foundation for two-line hybrid breeding of eggplant.

Open Access

We studied the effects of exogenous spermidine (Spd) on plant growth and nitrogen metabolism in two cultivars of tomato (Solanum lycopersicum) that have differential sensitivity to mixed salinity-alkalinity stress: ‘Jinpeng Chaoguan’ (salt-tolerant) and ‘Zhongza No. 9’ (salt-sensitive). Seedling growth of both tomato cultivars was inhibited by salinity-alkalinity stress, but Spd treatment alleviated the growth reduction to some extent, especially in ‘Zhongza No. 9’. Exogenous Spd may help reduce stress-induced increases in free amino acids, ammonium (NH4 +) contents, and NADH-dependent glutamate dehydrogenase (NADH-GDH) activities; depress stress-induced decreases in soluble protein and nitrate content; and depress nitrate reductase, nitrite reductase, glutamine synthetase (GS), NADH-dependent glutamate synthase (NADH-GOGAT), glutamate oxaloacetate transaminase (GOT), and glutamate pyruvate transaminase (GPT) activities, especially for ‘Zhongza No. 9’. Based on our results, we suggest that exogenous Spd promotes the assimilation of excess toxic NH4 + by coordinating and strengthening the synergistic action of NADH-GDH, GS/NADH-GOGAT, and transamination pathways, all during saline-alkaline stress. Subsequently, NH4 + and its related enzymes (GDH, GS, GOGAT, GOT, and GPT), in vivo, are maintained in a proper and balanced state to enable mitigation of stress-resulted damages. These results suggest that exogenous Spd treatment can relieve nitrogen metabolic disturbances caused by salinity-alkalinity stress and eventually promote plant growth.

Free access

Cytosine methylation plays important roles in regulating gene expression and modulating agronomic traits. In this study, the fluorescence-labeled methylation-sensitive amplified polymorphism (F-MSAP) technique was used to study variation in cytosine methylation among seven pecan (Carya illinoinensis) cultivars at four developmental stages. In addition, phenotypic variations in the leaves of these seven cultivars were investigated. Using eight primer sets, 22,796 bands and 950 sites were detected in the pecan cultivars at four stages. Variation in cytosine methylation was observed among the pecan cultivars, with total methylation levels ranging from 51.18% to 56.58% and polymorphism rates of 82.29%, 81.73%, 78.64%, and 79.09% being recorded at the four stages. Sufficiently accompanying the polymorphism data, significant differences in phenotypic traits were also observed among the pecan cultivars, suggesting that cytosine methylation may be an important factor underlying phenotypic variation. Hypermethylation was the dominant type of methylation among the four types observed, and full methylation occurred at higher levels than did hemimethylation in the pecan genomes. Cluster analysis and principal coordinate analysis (PCoA) identified Dice coefficients ranging from 0.698 to 0.778, with an average coefficient of 0.735, and the variance contribution rates of the previous three principal coordinates were 19.6%, 19.0%, and 18.2%, respectively. Among the seven pecan cultivars, four groups were clearly classified based on a Dice coefficient of 0.75 and the previous three principal coordinates. Tracing dynamic changes in methylation status across stages revealed that methylation patterns changed at a larger proportion of CCGG sites from the 30% of final fruit-size (30%-FFS) stage to the 70%-FFS stage, with general decreases in the total methylation level, the rate of polymorphism, and specific sites being observed in each cultivar. These results demonstrated that the F-MSAP technique is a powerful tool for quantitatively detecting cytosine methylation in pecan genomes and provide a new perspective for studying many important life processes in pecan.

Free access