Search Results

You are looking at 1 - 10 of 20 items for :

  • Author or Editor: Robert E. Paull x
  • Journal of the American Society for Horticultural Science x
Clear All Modify Search
Author:

Abstract

Total soluble solids, ethanol insoluble fraction, pH, titratable acidity, total phenols, total ethanol-soluble sugars, ascorbic acid, respiration, and ethylene production were determined sequentially in individual soursop fruits from the day of harvest until the start of fruit breakdown. Total soluble solids increased from about 10° Brix to near 16° Brix during 3 days of ripening. Fruit pulp pH declined from 5.8 to 3.6 with a concomitant increase in titratable acidity over the same ripening period. Penetration force was high, generally greater than 7.5 kg, in the preclimacteric stage and then declined to less than 0.5 kg during ripening. Total phenols declined during ripening to one-third of the preclimacteric levels, while total ethanol-soluble sugars and ascorbic acid increased twofold and elevenfold, respectively. The maximum respiration rate was 108 ml/kg·hr. Ethylene production increased 24–48 hr after the fruit climacteric was initiated. The optimum eating stage occurred at day 5 to 6 from harvest at the peak of ethylene production. At a later stage, the fruit was more bland with a slight off-odor; this correlated with a decline in the titratable acidity and total phenols.

Open Access

The postharvest life of Dendrobium spp. flower sprays was limited by wilting and shedding of individual “flowers. Late-summer-harvested sprays had a reduced postharvest life compared to winter-harvested sprays. Cultivars differed in postharvest life in response to packing and storing for 2 days at 22C. Water 10ss rates of `Princess' sprays continuously held in deionized water declined from ≈ 1.25 g/day per spray 4 days after harvest to 0.35 g/day per spray 20 days later. Flower shedding occurred when the rate of water loss fell below ≈1.0 g/day per spray. Addition of a floral preservative to the vase water slowed the decline in water loss and increased postharvest life. Sprays packed and stored for 6 days at 22C had half the postharvest life of nonpacked controls held in deionized water or of sprays packed for 2 or 4 days at 22C. Submerging sprays in water immediately after harvest did not significantly increase postharvest life; submerging the sprays after harvest, before packing, and again after unpacking reduced postharvest life. Sprays could not be held for more than 4 days at 10C without suffering chilling injury. Silver thiosulphate (2 mm) and other silver preparations had no effect on postharvest life, although silver ions did reach the top flowers of the spray; thus, ethylene may play only a minor role in spray postharvest life. The postharvest life of sprays was increased by using boiled deionized water in vase solutions and by the continuous presence of chloramphenicol. Other antimicrobial agents, such as Physan, sodium hypochlorite, and sodium dichloro-s-triazinetrione dihydrate were without effect. Microbial growth in the vase solution and at the cut stem end mav have reduced water transport and induced subsequent flower wilting and shedding.

Free access

The inflorescence of Protea neriifolia B. Br. was two-thirds of the total cut floral stem fresh weight and significantly influenced blackening of the attached 20 to 30 leaves. Floral stems harvested at five developmental stages were characterized for inflorescence diameter, fresh and dry weights, respiration, and nectar production. Inflorescence diameter and fresh and dry weights increased from stage 1 (very tight bud) to stage 5 (bracts reflexed). Respiration rate was high in stages 1 and 3. Nectar production began at stage 4 (open, cylindrical flower) and increased from 2.7 to 9.8 ml per flower with 15% to 23.5% total soluble solids as the flower opened. Postharvest inflorescence diameter, respiration rate, and nectar production increased and leaf blackening decreased when floral stems were placed in 5% (w/v) sucrose solution. Application of 14C-sucrose to a leaf subtending the inflorescence lead to >50% of the radioactivity being found in the nectar within 24 hours. These data indicate that leaf blackening in protea is the result of depletion of carbohydrate by the inflorescence, and that this depletion is primarily due to the sugar demand for nectar production.

Free access

The growth and development of Anthurium andraeanum Andre cv. Kaumana flower before and after emergence from the subtending leaf base was studied. Eighty days before emergence, the anthurium flower was =0.3 cm long, enclosed by two tightly rolled stipules at the base of the subtending leaf petiole. During the rapid elongation stage of the leaf petiole, the flower (0.8 to 1.0 cm long) entered a period of slow growth 40 to 60 days before flower emergence. After the subtending leaf blade unfurled and had a positive photosynthetic rate, flower growth resumed. Spathe color development started =28 days before emergence when the flower was =50% of the emergence flower length (4.5 cm). At flower emergence, the spathe, excluding the lobes, was =75% red. The lobes did not develop full redness until 7 to 10 days after emergence. Peduncle growth was sigmoidal with the maximum growth rate 21 days after emergence. Spathe growth is characterized by a double sigmoid curve. The young, growing, subtending leaf blade had a negative net photosynthetic rate. Removal of this leaf blade advanced flower emergence by 18 days. The soft green leaf (25 to 30 days after leaf emergence) had a slightly positive measured net photosynthetic rate, and the removal of this leaf resulted in flower emergence 11 days earlier. A mature subtending leaf had the highest measured net photosynthetic rate, and its removal had little effect on flower emergence. The subtending leaf acted as a source of nutrients required for the developing flower. Altering the source-sink relationship by leaf removal accelerated flower emergence, probably by reducing the slow growth phase of the flower.

Free access

The temperature and ethylene response of ripening papaya fruit (Carica papaya L. cv. Sunset) was determined with and without 14 days of storage at 10C. Temperatures at or higher than 30C adversely affected the quality of the ripe papaya. Papayas held at 32.5C for 10 days failed to ripen normally, as evidenced by poor color development, abnormal softening, surface pitting, and an occasional off-flavor. Skin yellowing, fruit softening, and flesh color of papayas exhibited a quadratic response to ripening time within the temperature range of 22.5 to 27.5C. Flesh color development of nonstored fruit did not change significantly during the first 6 days at ripening temperatures, then rapidly increased. Fruit stored for 14 days at 10C exhibited faster ripening rates (e.g., degreening and softening and no delay in flesh color development) than nonstored fruit when removed to other ripening temperatures (17.5 to 32.5 C). Problems of weight loss and development of external abnormalities were more significant at temperatures higher than 27.5C. The optimal temperature range was found to be between 22.5 and 27.5C, with fruit taking 10 to 18 days to reach full skin yellowing from color break, whether or not fruit was stored at 10C. Exogenously applied ethylene (=100 μl·liter-1) stimulated the rate of fruit ripening, as measured by more uniform skin yellowing and rate of flesh softening whether or not the fruit were stored for 14 days at 10C. Ethylene did not ripen immature papayas completely in terms of skin and flesh color development. The outer portion of the flesh of ethylene-treated fruit had a faster rate of ripening, as indicated by carotenoid development and softening rate, while the same area of the flesh was still pale white in nonethylene-treated fruit. Ethylene reduced the coefficient of variation for skin color, softening rate, and flesh color development in treated fruit. Ethylene increased the rate of skin degreening and hastened the rate of carotenoid development and softening in the outer mesocarp, while having little effect on the inner mesocarp.

Free access

Mesocarp softening during papaya (Carica papaya L.) ripening was impaired by heating at 42C for 30 min followed by 49C for 70 min, with areas of the flesh failing to soften. Disruption of the softening process varied with stage of ripeness and harvest date. The respiratory climacteric and ethylene production were higher and occurred 2 days sooner in the injured fruit than in the noninjured fruit that had been exposed to 49C for only 30 min. Skin degreening and internal carotenoid synthesis were unaffected by the heat treatments. Exposure of ripening fruit to either 42C for 4 hr or 38 to 42C for 1 hr followed by 3 hr at 22C resulted in the development of thermotolerance to exposure to the otherwise injurious heat treatment of 49C for 70 min. Four stainable polypeptide bands increased and seven declined in single-dimensional acrylamide gels following incubation of fruit at the nondamaging temperature of 38C for 2 hr. Three polypeptides showed marked increases when polysomal RNA was translated. These polypeptides had apparent molecular weights of 17, 18, and 70 kDa. Proteins with molecular weights of 46, 54, and 63 kDa had slight increases after heat treatment. The levels of these polypeptides peaked 2 hr after heat treatment and declined within 24 hr. The amount of these polypeptides in the unheated control varied with the batch of fruit. The concentration of three translated polypeptides, with apparent molecular weights of 26, 37, and 46 kDa, declined. Other polypeptides continued to be translated during and after holding papayas for 2 hr at 38C.

Free access

Sugar accumulation and the activities of sugar metabolizing enzymes were related to the occurrence of pineapple [Ananas comosus (L.) Merr.] flesh translucency. During early fruit development, glucose and fructose were the predominant sugars. Sucrose began to accumulate 6 weeks before harvest at a higher rate in the fruitlet than in the interfruitlet tissue. Electrolyte leakage from pineapple flesh increased rapidly from 6 weeks before harvest and paralleled sucrose accumulation. Sucrose synthase activity was high in young fruit flesh and declined with fruit development, while the activity of sucrose phosphate synthase was relatively low and constant throughout fruit development. The activities of acid invertase, neutral invertase, and cell-wall invertase (CWI) were high in the young fruit flesh and declined to very low levels 6 weeks before harvest when sucrose started to accumulate. CWI activity increased again, more in the fruitlet than in the interfruitlet tissue, 4 weeks before harvest. Removal of 1/3 of the plant leaves 3 weeks before harvest significantly reduced fruit flesh total soluble solids, CWI activity, and translucency incidence at harvest. The activity of CWI in translucent fruit flesh was significantly higher than in opaque fruit flesh at harvest. CWI activities in the basal section of pineapple flesh and in the fruitlet, where translucency first occurred, were higher than those in the apical section and in the interfruitlet tissue, respectively. Results support the hypothesis that high CWI activity in pineapple flesh at the later stage of fruit development enhances sucrose unloading into the fruit flesh apoplast, leading to increased apoplastic solute concentration (decreased solute potential) and subsequent water movement into the apoplast. This, in turn, may reduce porosity and lead to increased fruit flesh translucency.

Free access
Authors: and

Papaya (Carica papaya L.) fruit flesh and seed growth, fruit respiration, sugar accumulation, and the activities of sucrose phosphate synthase (SPS), sucrose synthase (SS), and acid invertase (AI) were determined from anthesis for ≈150 days after anthesis (DAA), the full ripe stage. Sugar began to accumulate in the fruit flesh between 100 and 140 DAA, after seed maturation had occurred. SPS activity remained low throughout fruit development. The activity of SS was high 14 DAA and decreased to less than one-fourth within 56 DAA, then remained constant during the remainder of fruit development. AI activity was low in young fruit and began to increase 90 DAA and reached a peak more than 10-fold higher, 125 DAA, as sugar accumulated in the flesh. Results suggest that SS and AI are two major enzymes that may determine papaya fruit sink strength in the early and late fruit development phases, respectively. AI activity paralleled sugar accumulation and may be involved in phloem sugar unloading.

Free access

Abstract

Short pretreatments of stems of anthurium flowers (Anthurium andraeanum André) with silver nitrate solutions increased vase life by 40 to 60% after a simulated shipping. Significant improvement was obtained with a single 10-minute treatment with 1 mm silver nitrate. Maximum postharvest life was obtained with flowers treated with silver nitrate within 12 hours of harvest. Silver nitrate treatment was effective on flowers ranging from half to full maturity. No measurable silver was translocated to the spathe or spadix. Silver thiosulfate complex was not as effective as silver nitrate. For response to silver treatment following simulated shipping of 3 days, 2 cm of stem had to be removed before placing in a vase solution. Continuous maintenance of the flower before and after simulated shipping in a commercial preservative was not significantly better than a single pulse with silver nitrate or a combination of silver nitrate pulse and commercial preservative.

Open Access

`Solo' papaya (Carica papaya L.) fruit removed at different points from a commercial packing house showed that skin injury due to mechanical damage increased as fruit moved through the handling system. The occurrence of “green islands” -areas of skin that remain green and sunken when the fruit was fully ripe-apparently were induced by mechanical injury. Skin injury was seen in fruit samples in contact with the sides of field bins, but not in fruit taken from the center of the bins. Bruise-free fruit at different stages of ripeness (5% to 50% yellow) were dropped from heights of 0 to 100 cm onto a smooth steel plate to simulate drops and injury incurred during commercial handling. No skin injury occurred, although riper fruit showed internal injury when dropped from higher than 75 cm. Fruit (10% to 15% yellow) dropped onto sandpaper from a height of 10 cm had skin injury symptoms similar to those seen on fruit from the commercial handling system. These results suggest that abrasion and puncture injury were more important than impact injury for papaya fruit. Heating fruit at 48C for ≈6 hours or until fruit core temperature (FCT) reached 47.5C aggravated the severity of skin injury. Delays in the application of heat treatment from dropping did not reduce the severity of skin injury significantly, except for fruit heated 24 hours after dropping. Waxing fruit alleviated the severity of skin injury, whether applied before or after the heat treatment. Skin injury to papaya was caused by abrasion and puncture damage-not impact-and increased during postharvest handling of the fruit. The injury was associated mainly with fruit hitting the walls of wooden bins-bin liners may reduce this injury.

Free access