Search Results
You are looking at 1 - 5 of 5 items for :
- Author or Editor: Robert D. Wright x
- HortTechnology x
Root growth following transplanting allows a plant to exploit water and nutrient resources in the soil backfill (landscape) or container substrate and thus is a critical factor for transplant survival. The Horhizotron, a horizontal root growth measurement instrument, has been developed and evaluated for use in measuring root growth under a variety of root environments. The design of the Horhizotron includes four wedge-shaped glass quadrants that extend away from a plant's root ball allowing measurement of roots as they grow out from the original root ball. The substrate in each quadrant can be modified in order to evaluate the effect of substrate or root environment on root growth. Materials used for construction were lightweight, durable, easy to assemble, and readily available from full service building supply stores. Units were suitable for use on a greenhouse bench or outdoors in contact with the ground. Horhizotrons provided a simple, nondestructive method to measure root growth over time under a wide range of rhizosphere conditions.
A pine tree substrate (PTS), produced by grinding loblolly pine trees (Pinus taeda), offers potential as a viable container substrate for greenhouse crops, but a better understanding of the fertilizer requirements for plant growth in PTS is needed. The purpose of this research was to determine the comparative fertilizer requirements for chrysanthemum (Chrysanthemum ×grandiflora ‘Baton Rouge’) grown in PTS or a commercial peat-lite (PL) substrate. The PTS was prepared by grinding coarse (1-inch × 1-inch × 0.5-inch) pine chips from debarked loblolly pine logs in a hammer mill fitted with 3/16-inch screen. The PL substrate composed of 45% peat, 15% perlite, 15% vermiculite, and 25% bark was used for comparative purposes. Rooted chrysanthemum cuttings were potted in each of the substrates on 15 Oct. 2005 and 12 Apr. 2006 and were glasshouse grown. Plants were fertilized with varying rates of a 20N–4.4P–16.6K-soluble fertilizer ranging from 50 to 400 mg·L−1 nitrogen (N) with each irrigation. Plant dry weights and extractable substrate nutrient levels were determined. In 2005 and 2006, it required about 100 mg·L−1 N more fertilizer for PTS compared to PL to obtain comparable growth. At any particular fertilizer level, substrate electrical conductivity and nutrient levels were higher for PL compared to PTS accounting for the higher fertilizer requirements for PTS. Possible reasons for the lower substrate nutrients levels with PTS are increased nutrient leaching in PTS due to PTS being more porous and having a lower cation exchange capacity than PL, and increased microbial immobilization of N in PTS compared to PL. This research demonstrates that PTS can be used to grow a traditional greenhouse crop if attention is given to fertilizer requirements.
Three experiments were conducted to determine the feasibility of using Biobarrier, a landscape fabric with trifluralin herbicide-impregnated nodules, of various sizes to prevent root escape of trees from the drainage holes of 56-liter containers in below-ground pot-in-pot (P&P) and above-ground Keeper Upper (KU) nursery production systems. In addition, side holes or slits were cut in some container walls to test the effect of Biobarrier on the prevention of circling roots. In Expt. 1 (P&P), Betula nigra L. `Heritage' (river birch) trees with no Biobarrier had root ratings for roots escaped through drainage holes that indicated a 5-fold increase in numbers of roots than for treatments containing Biobarrier. All Biobarrier treatments reduced root escape and resulted in commercially acceptable control. In Expt. 2 (KU), control and the Biobarrier treatment river birch trees (30 nodules) had commercially unacceptable root escape. In Expt. 3 (P&P), control and 10-nodule treatment Prunus × yedoensis Matsum. (Yoshino cherry) trees had commercially unacceptable root escape, but treatments containing 20 and 40 nodules resulted in commercially acceptable control. Biobarrier did not limit shoot growth in any of the experiments. The results of these experiments indicate that Biobarrier did not prevent circling roots, but sheets containing at least 8 or 20 nodules of trifluralin acceptably prevented root escape from drainage holes in the pot-in-pot production of 56-liter container river birch trees and Yoshino cherry trees, respectively.
The objective of this study was to evaluate the landscape performance of annual bedding plants grown in a ground pine tree substrate (PTS) produced from loblolly pine trees (Pinus taeda) or in ground pine bark (PB) when transplanted into the landscape and grown at three different fertilizer rates. Begonia (Begonia ×semperflorens-cultorum) ‘Cocktail Vodka’, coleus (Solenostemen scutellarioides) ‘Kingswood Torch’, impatiens (Impatiens walleriana) ‘Dazzler White’, marigold (Tagetes erecta) ‘Bonanza Yellow’, petunia (Petunia ×hybrid) ‘Wave Purple’, salvia (Salvia splendens) ‘Red Hot Sally’, and vinca (Catharanthus roseus) ‘Cooler Pink’ were evaluated in 2005, and begonia ‘Cocktail Whiskey’, marigold ‘Inca Gold’, salvia ‘Red Hot Sally’, and vinca ‘Cooler Pink’ were evaluated in 2006 and 2007. Landscape fertilizer rates were 1 lb/1000 ft2 nitrogen (N) in 2005 and 0, 1, and 2 lb/1000 ft2 N in 2006 and 2007. Visual observations throughout each year indicated that all species, whether grown in PTS or PB, had comparable foliage quality in the landscape trial beds during the growing period. With few exceptions, dry weight and plant size for all species increased with increasing fertilizer additions, regardless of the substrate in which the plants were grown. For the unfertilized treatment, when comparing plant dry weight between PB and PTS for each species and for each year (eight comparisons), PTS-grown plant dry weight was less than PB-grown plants in three out of the eight comparisons. However, there were fewer differences in plant dry weight between PTS- and PB-grown plants when fertilizer was applied (PTS-grown plants were smaller than PB-grown plants in only 2 of the 16 comparisons: four species, two fertilizer rates, and 2 years), indicating that N immobilization may be somewhat of an issue, but not to the extent expected. Therefore, the utilization of PTS as a substrate for the production of landscape annuals may be acceptable in the context of landscape performance.