Search Results

You are looking at 1 - 10 of 27 items for :

  • Author or Editor: Richard Smith* x
  • HortScience x
Clear All Modify Search

Abstract

There are relatively few references dealing with the role of man as a virus vector, and none that is so specific as to examine the role of plant breeders in the dissemination of virus diseases. Therefore, I have relied to a large extent on unpublished observations and what I hope is an unbiased interpretation of some selected papers on plant virus epidemiology. Some statements may appear outrageous initially. The following sentence is provocative: “Plant breeders usually possess only a superficial knowledge of plant viruses and the mechanisms by which they are transmitted.” This statement is not intended to belittle the training or competence of plant breeders. It is simply what I consider to be a statement of fact. Further, I suspect it will continue to be true for the foreseeable future. It would be equally true if the statement were reversed: “Plant virologists usually possess only a superficial knowledge of plant breeding and the mechanisms by which genetic factors are transmitted”.

Open Access

Abstract

Mechanically harvested fruit of the strawberry (Fragaria × ananassa Duch.) cv. Veeglow destined for processing can be stored at 1°C in bulk bins for 4 to 6 days if room-cooled, and for 6 to 8 days if forced-air cooled promptly after harvest, without appreciable loss due to rot development or of quality of processed product. Yields of puree from fresh fruit mechanically harvested on day 8 of the storage trial were lower than for fruit that had been forced-air cooled and stored at 0° for 8 days. Sulfur dioxide fumigation immediately after cooling reduced losses due to rot and lowered mold counts, particularly when the fruit was room cooled.

Open Access

Pepper stip is a physiological disorder manifested as gray-brown to greenish spots occurring on the fruit of bell, pimento, Anaheim, and other types of peppers, most noticeably on red fruit that mature under fall conditions. Most hybrid bell cultivars are resistant to the malady; the problem is most severe for pepper growers reliant on less-expensive, open-pollinated cultivars. In 1995, we initiated studies to evaluate the possible link between mineral nutrition and this disorder. Two susceptible open-pollinated cultivars and two resistant hybrid cultivars were grown in randomized plots at seven sites. Significant correlations were seen between the levels of potassium (r = 0.59) and calcium (r = -0.37) in whole leaves and the incidence of stip (P = 0.05). The stip-resistant cultivars also maintained less total nitrogen in the whole leaves than susceptible cultivars (P = 0.05). In 1996 and 1997, we undertook field studies to evaluate the effects of varying calcium and nitrogen application rates. Inconsistent results were observed with calcium applications. Moderate reductions in stip incidence was observed at some sites and no reduction at others following foliar calcium applications. Nitrogen nutrition had no effect on stip severity. In 1998, evaluation of a large number of open-pollinated cultivars was undertaken; `Gusto' showed excellent tolerance to pepper stip, followed by `Taurus' and `Cal Wonder 300'. We conclude that growers that are reliant on open-pollinated cultivars can utilize these cultivars to minimize the incidence of pepper stip.

Free access

Pepper stip is a physiological disorder manifested as gray-brown to greenish spots occurring on fruit of bell, pimento, Anaheim, and other types of peppers, most noticeably on red fruit produced under fall conditions. The spots, ≈0.5 cm in diameter, occur singly or in groups; marketability for either fresh market or processing use is severely affected. The factors controlling the occurrence or severity of the disorder are not well understood; to date, control has been achieved primarily by the use of resistant cultivars. In 1995 replicated plots of susceptible (`Yolo Wonder L' and `Grande Rio') and resistant (`Galaxy' and `King Arthur') cultivars were grown in seven commercial fields in central California. `Galaxy' and `King Arthur' were essentially free of symptoms, while `Yolo Wonder L' and `Grande Rio' showed significant damage at all sites, with 23% to 88% of fruits affected at the mature-red stage. Petiole tissue analysis showed that resistant cultivars consistently had lower N and K, and higher Ca concentrations than susceptible cultivars; the same trend was apparent in fruit tissue. Stip was most severe at sites with low soil Ca and/or very high N and K fertilization rates. It is hypothesized that Ca nutrition significantly influences stip expression.

Free access

Summer-grown Hydrangea macrophylla subsp. macrophylla var. macrophylla (Thunb.) were exposed for 1 week to CzH4 at 0,0.5,2.0,5.0,50, or 500 μl·liter-1 in dark storage at 16C for defoliation before cold storage. The number of leaves remaining per shoot for all cultivars decreased with C2H4 concentration, and >5 μl C2H4/liter was effective in defoliating `Kasteln', `Mathilda Gutges', and `Todi' but not `Merritt's Supreme'.

Free access

Strawberry (Fragaria ×ananassa Duch.) production in California uses plastic mulch–covered beds that provide many benefits such as moisture conservation and weed control. Unfortunately, the mulch can also cause environmental problems by increasing runoff and soil erosion and reducing groundwater recharge. Planting cover crops in bare furrows between the plastic cover beds can help minimize these problems. Furrow cover cropping was evaluated during two growing seasons in organic strawberries in Salinas, CA, using a mustard (Sinapis alba L.) cover crop planted at two seeding rates (1× and 3×). Mustard was planted in November or December after strawberry transplanting and it resulted in average densities per meter of furrow of 54 and 162 mustard plants for the 1× and 3× rates, respectively. The mustard was mowed in February before it shaded the strawberry plants. Increasing the seeding rate increased mustard shoot biomass and height, and reduced the concentration of P in the mustard shoots. Compared with furrows with no cover crop, cover-cropped furrows reduced weed biomass by 29% and 40% in the 1× and 3× seeding rates, respectively, although weeds still accounted for at least 28% of the furrow biomass in the cover-cropped furrows. These results show that growing mustard cover crops in furrows without irrigating the furrows worked well even during years with relatively minimal precipitation. We conclude that 1) mustard densities of ≈150 plants/m furrow will likely provide the most benefits due to greater biomass production, N scavenging, and weed suppression; 2) mowing was an effective way to kill the mustard; and 3) high seeding rates of mustard alone are insufficient to provide adequate weed suppression in strawberry furrows.

Free access

Abstract

Celery (Apium graveolens L. var. dulce DC.) stored at 0°-1°C in 1.5% O2 had better marketable quality than that stored in air after 11 weeks. Marketable celery was improved by using 2.5-7.5% CO in the storage atmosphere, but not by 2-4% CO2. Decay was most severe on celery stored in 21% O2. Botrytis cinerea Pers. and Sclerotinia sclerotiorum (Lib.) de Bary were the most frequent isolates recovered from decayed celery.

Open Access

Abstract

Sclerotinia sclerotiorum (Lib.) de Bary and Botrytis cinerea Pers. were highly pathogenic to celery stored at 0° to 1°C in normal air (21% O2). Alternaría dauci (Kuhn) Groves & Skolko, Rhizopus nigricans Ehrenb., Penicillium sp., and Fusarium oxysporum Schlecht, were nonpathogenic. An atmosphere of 7.5% CO/1.5% O2 was more suppressive to disease caused by B. cinerea and S. sclerotiorum than low 1.5% O2 atmosphere alone. The 4% CO2/1.5% O2 and 0.0003% C2H4/1.5% O2 atmospheres were slightly suppressive to disease caused by S. sclerotiorum only. The 7.5% CO/1.5% O2 atmosphere also was consistently suppressive to mycelial growth, spore germination, and germ tube elongation of B. cinerea.

Open Access

Rapid posttransplant root growth is often a determining component of successful establishment. This study tested the effect of transplant timing on first-season root growth dynamics of bare-root Turkish hazelnut trees. Trees were either harvested and planted in the fall (F-F), harvested in the fall and planted in the spring after holding in refrigerated storage (F-S), or harvested and planted in the spring (S-S). All trees were transplanted into 51-L containers, adapted with root observation windows. Root growth began in F-F and F-S trees 1-2 weeks before spring budbreak, but was delayed in S-S trees until ≈3 weeks after budbreak. Budbreak was 6 days earlier for fall-harvested than for spring-harvested trees. No new roots were observed before spring. Root length accumulation against observation windows (RL) was delayed for S-S trees, but rate of increase was similar to F-F and F-S trees soon after growth began. Seasonal height, trunk diameter growth, and RL were similar among treatments. Surface area of two-dimensional pictures of entire rootballs was not correlated with seasonal RL.

Free access

Growers in the Salinas Valley are not able to rotate away from lettuce to other crops such as broccoli, as often as would be desirable due to economic pressures such as high land rents and lower economic returns for rotational crops. This aggravates problems with key soilborne diseases such as Sclerotinia minor, Lettuce Drop. Mustard cover crops (Brassica juncea and Sinapis alba) are short-season alternative rotational crops that are being examined in the Salinas Valley for the potential that they have to reduce soilborne disease and weeds. Mustard cover crops have been have been shown to suppress various soilborne diseases and there are also indications that they can provide limited control of some weed species. However, no studies have shown the impact of mustard cover crops under field conditions on S. minor. In 2003 we conducted preliminary studies on the incidence of S. minor and weeds following mustard cover crops in comparison with a bare control or an area cover cropped to Merced Rye (Secale cereale). There was a slight, but significant reduction of S. minor infection in one of three trials following mustard cover crops. Mustard cover crops also reduced emergence of Shepherd's Purse (Capsella bursa-pastoris) and Common Purslane (Portulaca oleracea) these studies. Mustard cover crops have distinct nitrogen cycling characteristics. They were shown to reach a peak of release of nitrogen in 30 to 50 days following incorporation into the soil. The levels of nitrogen that are released by mustard cover crops were substantial and could be useful in nitrogen fertilizer programs for subsequent vegetable crops.

Free access