Search Results
You are looking at 1 - 4 of 4 items for :
- Author or Editor: Richard C. Beeson x
- HortTechnology x
In many sectors of agriculture, precision irrigation, applying only what water is needed for a given small area, has become a familiar term. Irrigation in most woody ornamental nurseries, though, has changed little since the 1960s. In many areas of the U.S., irrigation volumes required for nursery production have come under scrutiny due to projected, or real, competition for water with urban populations, or concerns over nursery runoff. Modeling of woody ornamental water use, and subsequent irrigation requirements, has been limited and focused mostly on trees. Previous research for modeling of non-tree water use is reviewed as an introduction to current efforts to develop models for precision irrigation of woody ornamentals. Pitfalls and limitations in current modeling efforts, along with suggestions for standardizing future research is emphasized. The latest model derived from recent research is presented.
Previous research indicated that bedding plants can be maintained in landscape soils allowed to dry to substantially less than field capacity before irrigation; however, canopy size and aesthetic quality were compromised. Continuing this research, ‘Yalaha’ coleus (Solenostemon scutellarioides) were grown in drainage lysimeters in an open-sided clear polyethylene-covered shelter and a companion uncovered field plot to assess growth characteristics and landscape quality when irrigated at various managed allowable deficits. Using tensiometers, plants were irrigated back to field capacity when plant-available water within a soil was depleted to 70% or 50%. Deficits were evaluated against a control treatment of 0.5 inch daily irrigation. Total irrigation volume applied was significantly greater for the control treatments than deficit irrigation treatments. The net result was 78% and 90% average reductions in total volume applied to lysimeter and field-grown coleus respectively. On average, height was 20% and 15% greater for well-watered controls grown in lysimeters and field plots respectively than plants grown in deficit irrigations. Canopy size of nondeficit controls was 26% and 72% greater on average than deficit treatments in lysimeter and field plots respectively. However, shoot and root dry weights, total biomass, shoot-to-root ratios, and landscape quality were similar among treatments for both locations.
Nursery and greenhouse producers, research and extension faculty, and representatives from allied fields collaborated to formulate a renewed vision to address water issues affecting growers over the next 10 years. The authors maintained the original container irrigation perspective published in “Strategic vision of container nursery irrigation in the next ten years,” yet broadened the perspective to include additional challenges that face nursery crop producers today and in the future. Water availability, quality, and related issues continue to garner widespread attention. Irrigation practices remain largely unchanged due to existing irrigation system infrastructure and minimal changes in state and federal regulations. Recent concerns over urbanization and population growth, increased climate variability, and advancements in state and federal regulations, including new groundwater withdrawal limitations, have provided an inducement for growers to adopt efficient and innovative practices. Information in support of the overarching issues and projected outcomes are discussed within.
Increasing environmental concerns and legislation in many states and in other countries require that we take a more comprehensive sustainable “best management” approach to production techniques in nursery and greenhouse operations. This is particularly important because these production facilities are typically intense users of resources that are applied to relatively small land areas. We have developed an online knowledge center to facilitate the implementation of more sustainable practices within the nursery and greenhouse industry. A web-based knowledge center provides the most cost-effective mechanism for information delivery, as our potential audiences are extremely diverse and widespread. We currently have a registered user database of over 450 educators, growers, and industry professionals, and undergraduate and graduate students. A gateway website provides an overview of the issues and the goals of the project. The associated knowledge center currently has 25 in-depth learning modules, designed in a Moodle learning management framework. These learning modules are designed to actively engage learners in topics on substrate, irrigation, surface water, and nutrient and crop health management, which are integral to formulating farm-specific strategies for more sustainable water and nutrient management practices. Additional modules provide assessment and implementation tools for irrigation audits, irrigation methods and technologies, and water and nutrient management planning. The instructional design of the learning modules was paramount because there can be multiple strategies to improve site-specific production practices, which often require an integration of knowledge from engineering, plant science, and plant pathology disciplines. The assessment and review of current practices, and the decision to change a practice, are often not linear, nor simple. All modules were designed with this process in mind, and include numerous resources [pictures, diagrams, case studies, and assessment tools (e.g., spreadsheets and example calculations)] to enable the learner to fully understand all of the options available and to think critically about his/her decisions. Sixteen of the modules were used to teach an intensive 400-level “Principles of Water and Nutrient Management” course at the University of Maryland during Spring 2008 and 2009. The water and nutrient management planning module also supports the nursery and greenhouse Farmer Training Certification program in Maryland. The Maryland Department of Agriculture provides continuing education credits for all consultants and growers who register and complete any module in the knowledge center. Although these learning resources were developed by faculty in the eastern region of the United States, much of the information is applicable to more widespread audiences.