Search Results
You are looking at 1 - 3 of 3 items for :
- Author or Editor: Renjuan Qian x
- HortScience x
Lantana species are an important component of the U.S. environmental horticulture industry. The most commonly produced and used species are L. camara and, on a smaller scale, L. montevidensis. Both were introduced to the United States from Central and/or South America. Lantana species native to the continental United States include L. canescens, L. depressa, L. involucrata, etc. and most of them have not been well exploited. This study was conducted to obtain information about somatic chromosome numbers, karyotypes, and genome size of these five species. Nuclear DNA content in these species ranged from 2.74 pg/2C (L. involucrata) to 6.29 pg/2C (L. depressa var. depressa). Four chromosome numbers were observed: 2n = 2x = 22 in L. camara ‘Lola’ and ‘Denholm White’, 2n = 4x = 44 in L. depressa var. depressa, 2n = 2x = 24 in L. canescens and L. involucrata, and 2n = 3x = 36 in L. montevidensis. Two basic chromosome numbers were observed: x = 11 in L. camara and L. depressa var. depressa, and x = 12 in L. canescens, L. involucrata, and L. montevidensis. Analysis of somatic metaphases resulted in formulas of 20m + 2sm for L. camara ‘Lola’ and ‘Denholm White’, 12m + 12sm for L. canescens, 44m for L. depressa var. depressa, 10m + 14sm for L. involucrata, and 32m + 4sm for L. montevidensis. Satellites were identified in all five species, but were associated with a different chromosome group in different species. L. depressa var. depressa had the longest total chromatin length (146.78 µm) with a range of 1.88 to 4.41 µm for individual chromosomes. The maximum arm ratio was observed in L. canescens, with a ratio of 2.5 in chromosome group 3. L. depressa var. depressa was the only species that had all of its centromeres located in the median region of the chromosome. The results show significant differences in nuclear DNA content, chromosome number, and karyotype among three native and two introduced lantana species and will help to identify, preserve, protect, and use native lantana species. The information will be helpful in assessing the ploidy levels in the genus by flow cytometry.
Gulf vervain (Verbena xutha) is a herbaceous perennial native to the southern United States. The species produces attractive spike inflorescences that provide a source of food for many pollinators. Besides botanical classifications, pollen morphology and cytological traits of this species have not been documented until now. Gulf vervain was found to have 2n = 42 chromosomes, with the first report of 2C nuclear DNA content of 2.95 pg. Convex-triangular pollen grains averaged 37.18 μm in diameter, with 84% stainability after cotton blue staining to estimate pollen viability. This information brings light to the genetic makeup of gulf vervain and may aid in future breeding programs.
Porterweed (Stachytarpheta spp.), a member of the verbena family, is frequently used in pollinator gardens to attract butterflies. This study was conducted to assess the morphological features, pollen stainability and morphology, nuclear DNA content, and chromosome number of five porterweed selections. Coral porterweed (S. mutabilis), ‘Naples Lilac’ porterweed (S. cayennensis × S. mutabilis ‘Violacea’), and nettleleaf porterweed (S. cayennensis) had the largest plant heights. Flower number was significantly higher in nettleleaf porterweed, jamaican porterweed (S. jamaicensis), and U*J3-2 porterweed (S. cayennensis × S. jamaicensis), with an average of 65–72 flowers per inflorescence. Internode length and flower width of jamaican porterweed had much lower values than the other selections. Coral porterweed recorded the lowest pollen stainability with only 10.6% stainability, but it had the largest relative pollen production. ‘Naples Lilac’ porterweed had the highest DNA content with an average of 3.79 pg/2C, like jamaican porterweed with 3.73 pg/2C. Ploidy levels varied between selections, and the basic chromosome number was x = 28. Coral, jamaican, and ‘Naples Lilac’ porterweed had 2n = 6x = 168 chromosomes, first reported in this genus. These results provide a guide and a new tool to distinguish native and non-native porterweed and may aid future breeding toward the production of noninvasive cultivars.